
ZScript v7
Programming Language

Reference Manual

Definitions

Token: A token is a symbol, or a string of letters, reserved by the system for internal use, that directs the

parser to act in a specific manner, or is used by the parser to identify the type of data, statement, object,

or script that you are using. All mathematical symbols, assign symbols, datatypes, script types, and

statement types are tokens. For a full list of tokens, see the table (insert).

Scope: t/b/a

Directive: A compiler-specific instruction, that informs the compiler to do a specific task. At this time,

the only legal directive is import “filename”.

Identifier: An identifier is the alpha-numeric sequence of characters used to identify a variable, pointer,

or function ‘by name’. If you have a declaration of int x, the identifier is x.

Literal: A literal is a mathematical value, represented solely by numbers. 215 is a literal, while (214+n)

where n is 1, is not a literal. (n is a variable.)

Variable: A variable is any data value that can be changed, either pre-allocated by the system (internal,

global variables; and pointer variables), or declared by the user. Link->X, Game->Deaths, and a user-

declared int n, are all variables. All declarations in ZScript are technically variables, and some may also

be pointers.

The legal variable types (datatypes) are: int, float (identical to int when declared in scripts), bool, ffc, npc,

item, itemdata, lweapon, and eweapon. (npcdata, and others t/b/a).

Constant (a/k/a Define): In ZScript, a constant is a value that is fixed, and once declared, cannot be

altered. Constants in ZScript are effectively identical to #define in C. The purpose of declaring a constant,

is to assign an identifier to a numeric value, so that it is easier to use; and to permit globally changing

values assigned by constants with a single change.

Array: A series of values connected in one set, to ease iteration and access. Individual values are stored

in indices (or elements) of the array. For more information, see ‘Arrays’ (page t/b/a).

Pointer: A pointer is a declared variable that is associated with a class, object, or array. It is always the

identifier declared for the data in question; so in the case of ffc f, the pointer is f; and in the case of int

array_dat[256], the pointer is array_dat.

When referencing a variable that belongs to a pointer. You must use the dereference token -> to

associate it. Thus, for ffc f, if you wish to access the X variable, you would reference it as f->X.

The internal ZScript pointers are Game, Screen, Link, Audio, NPCData, Debug, ffc, npc, item, itemdata,

lweapon, and eweapon.

Datatype: The type of data held by a variable, array, or pointer. Also the return type of a function. Legal

datatypes are: int, bool., float, ffc, npc, item, itemdata, eweapon, and lweapon.

Declaration: A declaration is the creation of a variable, or pointer, using an identifier. The declaration

may, or may not be initialized.

Example: int x;

 This declares the variable x with a datatype of int.

Assign: The act of storing a value in a variable, a value in an array, or a structure in a pointer.

 Examples:

 X = 6;

 This assigns the literal value 6 to the variable x.

 float arr[3]={6,1,2};

 This declares and assigns the three indices of the array *arr with the literal values 6, 1, and 2.

 arr[0] = 6;

 This assigns the literal 6 to index 0 of the array *arr.

 ffc f = Screen->LoadFFC(1);

 This declares the pointer f and uses the function LoadFFC() using the Screen-> pointer to load the

structure of the ffc ID 1 into the pointer.

Initialise: The act of assigning an initial value to a variable, or a structure to an object pointer, or values

to an array during its creation.

 Example

Structure: A set of related data values, such as all the values associated with an ffc. These are typically

loaded into a pointer, created by the user, but they may also be created by the user by creating a struct.

Function: A function is an instruction that you may call that carries out a specific set of routines. There

are two primary types of functions: Internal Functions, used and reserved by the compiler, that are

defined in advance; and user-defined functions.

Internal Functions

ZScript has a wide variety of internal functions that are tied to the ZScript internal pointers and data

structures. These are fixed, and you may not change them, but you may define your own functions to

make use of them. They are the basic building blocks of the ZScript language.

User-Defined Functions

The latter of these, are functions that you create, or that are supplied in the form of headers, or in pre-

existing scripts. User-defined functions may be at either:

Global (file) scope, and thus available at any time, to any script (or other function) by calling them using

their identifier. Global function identifiers and signatures must be unique within the context of a quest

at a file scope, across any number of headers, or files.

Script scope functions, must have a unique identifier and signature, on a per-script basis, and thus you

may define a function with the same identifier and signature in multiple scripts, that behave differently,

as-needed.

Function Return Type: Functions are declared with a specific return type. These are generally int, float,

or bool, and represent the type of data that the function returns when called. They may also be complex

types, such as ffc, npc, item, itemdata, eweapon, and lweapon (t/b/a npcdata, combodata, and others).

A return type of void specifies a null return. These functions do not return a value. All other function

types must have valid return instructions. A return instruction in a void typed function will prematurely

end the function and exit its scope.

Function Parameters: The parameters of a function represent its inputs. A function with no parameters

is legal, and would look like this:

 void ClearArray()

{

for (int a = SizeOfArray(array_pointer_identifier); q <= 0; q--)

{

 array_pointer_identifier[q] = 0;

}

}

Here, the function return type is void, and the function has no input parameters.

In contrast, this function has both a return type and parameters.

int GetArrayIndexValue(int ptr, int index)

{

return ptr[index];

}

Function Signature: The signature of a function is the way it is defined, by its return type and by its

inputs. The following are function declarations, and explanations of their signatures:

 void foo(int a) { Link->X += a; }

 Signature:

Return Type: void

Parameters: (int) -- One input, type int.

 void foo(int a, bool b) { if (b) Link->X += a; else Link->X -= a; }

 Signature:

 Return Type: void

 Parameters (int, bool) – Two inputs, type int, then type bool.

The ZScript parser will attempt to match function calls based on the signature of a function. If the

function is internal, then the parser will scan for it, using a pointer if supplied with one. If it cannot find a

match, it will return an error reporting a mismatch based on the function identifier, if there is no

