

Download at Boykma.Com

flex & bison

Download at Boykma.Com

Download at Boykma.Com

flex & bison

John R. Levine

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Download at Boykma.Com

flex & bison
by John R. Levine

Copyright © 2009 John Levine. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St.Laurent
Production Editor: Adam Witwer
Copyeditor: Kim Wimpsett
Proofreader: Teresa Berensfeld
Production Services: Molly Sharp

Indexer: Fred Brown
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
August 2009: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. The image of Nicobar pigeons and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-15597-1

[M]

1249406280

Download at Boykma.Com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Preface . xiii

1. Introducing Flex and Bison . 1
Lexical Analysis and Parsing 1
Regular Expressions and Scanning 2

Our First Flex Program 2
Programs in Plain Flex 4
Putting Flex and Bison Together 5
The Scanner as Coroutine 6
Tokens and Values 7

Grammars and Parsing 9
BNF Grammars 10
Bison’s Rule Input Language 11
Compiling Flex and Bison Programs Together 13

Ambiguous Grammars: Not Quite 14
Adding a Few More Rules 15
Flex and Bison vs. Handwritten Scanners and Parsers 16
Exercises 17

2. Using Flex . 19
Regular Expressions 19

Regular Expression Examples 21
How Flex Handles Ambiguous Patterns 22
Context-Dependent Tokens 22

File I/O in Flex Scanners 23
Reading Several Files 24
The I/O Structure of a Flex Scanner 25

Input to a Flex Scanner 26
Flex Scanner Output 27

Start States and Nested Input Files 28
Symbol Tables and a Concordance Generator 32

v

Download at Boykma.Com

Managing Symbol Tables 32
Using a Symbol Table 35

C Language Cross-Reference 38
Exercises 45

3. Using Bison . 47
How a Bison Parser Matches Its Input 47
Shift/Reduce Parsing 48

What Bison’s LALR(1) Parser Cannot Parse 50
A Bison Parser 51
Abstract Syntax Trees 51
An Improved Calculator That Creates ASTs 52

Literal Character Tokens 54
Building the AST Calculator 57

Shift/Reduce Conflicts and Operator Precedence 58
When Not to Use Precedence Rules 60

An Advanced Calculator 61
Advanced Calculator Parser 64
Calculator Statement Syntax 65
Calculator Expression Syntax 66
Top-Level Calculator Grammar 67
Basic Parser Error Recovery 67
The Advanced Calculator Lexer 68
Reserved Words 69
Building and Interpreting ASTs 70
Evaluating Functions in the Calculator 76
User-Defined Functions 76

Using the Advanced Calculator 79
Exercises 79

4. Parsing SQL . 81
A Quick Overview of SQL 81

Relational Databases 82
Manipulating Relations 83
Three Ways to Use SQL 83
SQL to RPN 84
The Lexer 85

Scanning SQL Keywords 86
Scanning Numbers 90
Scanning Operators and Punctuation 91
Scanning Functions and Names 92
Comments and Miscellany 93

The Parser 94

vi | Table of Contents

Download at Boykma.Com

The Top-Level Parsing Rules 96
SQL Expressions 96
Select Statements 101
Delete Statement 106
Insert and Replace Statements 107
Update Statement 110
Create Database 110
Create Table 111
User Variables 114
The Parser Routines 115

The Makefile for the SQL Parser 116
Exercises 117

5. A Reference for Flex Specifications . 119
Structure of a Flex Specification 119

Definition Section 119
Rules Section 120
User Subroutines 120

BEGIN 120
C++ Scanners 121
Context Sensitivity 121

Left Context 121
Right Context 122

Definitions (Substitutions) 122
ECHO 123
Input Management 123

Stdio File Chaining 123
Input Buffers 123
Input from Strings 124
File Nesting 124
input() 125
YY_INPUT 125

Flex Library 125
Interactive and Batch Scanners 126
Line Numbers and yylineno 126
Literal Block 126
Multiple Lexers in One Program 127

Combined Lexers 127
Multiple Lexers 128

Options When Building a Scanner 129
Portability of Flex Lexers 129

Porting Generated C Lexers 129
Reentrant Scanners 130

Table of Contents | vii

Download at Boykma.Com

Extra Data for Reentrant Scanners 130
Access to Reentrant Scanner Data 131
Reentrant Scanners, Nested Files, and Multiple Scanners 131
Using Reentrant Scanners with Bison 132

Regular Expression Syntax 132
Metacharacters 132

REJECT 135
Returning Values from yylex() 135
Start States 136
unput() 137
yyinput() yyunput() 137
yyleng 137
yyless() 137
yylex() and YY_DECL 138
yymore() 139
yyrestart() 139
yy_scan_string and yy_scan_buffer 139
YY_USER_ACTION 139
yywrap() 139

6. A Reference for Bison Specifications . 141
Structure of a Bison Grammar 141

Symbols 141
Definition Section 142
Rules Section 142
User Subroutines Section 142

Actions 142
Embedded Actions 143
Symbol Types for Embedded Actions 144

Ambiguity and Conflicts 144
Types of Conflicts 144
Shift/Reduce Conflicts 144
Reduce/Reduce Conflicts 145
%expect 145
GLR Parsers 145

Bugs in Bison Programs 146
Infinite Recursion 146
Interchanging Precedence 146
Embedded Actions 146

C++ Parsers 147
%code Blocks 147
End Marker 147
Error Token and Error Recovery 147

viii | Table of Contents

Download at Boykma.Com

%destructor 148
Inherited Attributes ($0) 148

Symbol Types for Inherited Attributes 149
%initial-action 149
Lexical Feedback 150
Literal Block 151
Literal Tokens 151
Locations 152
%parse-param 152
Portability of Bison Parsers 153

Porting Bison Grammars 153
Porting Generated C Parsers 153
Libraries 153
Character Codes 153

Precedence and Associativity Declarations 154
Precedence 154
Associativity 154
Precedence Declarations 154
Using Precedence and Associativity to Resolve Conflicts 155
Typical Uses of Precedence 155

Recursive Rules 155
Left and Right Recursion 156

Rules 157
Special Characters 158
%start Declaration 159
Symbol Values 160

Declaring Symbol Types 160
Explicit Symbol Types 160

Tokens 161
Token Numbers 161
Token Values 161
%type Declaration 162
%union Declaration 163

Variant and Multiple Grammars 163
Combined Parsers 163

Multiple Parsers 165
Using %name-prefix or the -p Flag 165
Lexers for Multiple Parsers 165
Pure Parsers 165

y.output Files 166
Bison Library 167

main() 167
yyerror() 167

Table of Contents | ix

Download at Boykma.Com

YYABORT 168
YYACCEPT 168
YYBACKUP 168
yyclearin 169
yydebug and YYDEBUG 169

YYDEBUG 169
yydebug 169

yyerrok 169
YYERROR 170
yyerror() 170
yyparse() 171
YYRECOVERING() 171

7. Ambiguities and Conflicts . 173
The Pointer Model and Conflicts 173
Kinds of Conflicts 175
Parser States 176
Contents of name.output 178
Reduce/Reduce Conflicts 178
Shift/Reduce Conflicts 180
Review of Conflicts in name.output 182
Common Examples of Conflicts 183

Expression Grammars 183
IF/THEN/ELSE 185
Nested List Grammar 186

How Do You Fix the Conflict? 187
IF/THEN/ELSE (Shift/Reduce) 188
Loop Within a Loop (Shift/Reduce) 190
Expression Precedence (Shift/Reduce) 191
Limited Lookahead (Shift/Reduce or Reduce/Reduce) 191
Overlap of Alternatives (Reduce/Reduce) 192

Summary 194
Exercises 194

8. Error Reporting and Recovery . 197
Error Reporting 197
Locations 199

Adding Locations to the Parser 200
Adding Locations to the Lexer 201
More Sophisticated Locations with Filenames 202

Error Recovery 204
Bison Error Recovery 205

Freeing Discarded Symbols 206

x | Table of Contents

Download at Boykma.Com

Error Recovery in Interactive Parsers 206
Where to Put Error Tokens 207

Compiler Error Recovery 208
Exercises 208

9. Advanced Flex and Bison . 209
Pure Scanners and Parsers 209

Pure Scanners in Flex 210
Pure Parsers in Bison 212
Using Pure Scanners and Parsers Together 213
A Reentrant Calculator 214

GLR Parsing 230
GLR Version of the SQL Parser 231

C++ Parsers 234
A C++ Calculator 235
C++ Parser Naming 235
A C++ Parser 236
Interfacing a Scanner with a C++ Parser 239
Should You Write Your Parser in C++ ? 241

Exercises 241

Appendix: SQL Parser Grammar and Cross-Reference . 243

Glossary . 259

Index . 263

Table of Contents | xi

Download at Boykma.Com

Download at Boykma.Com

Preface

Flex and bison are tools designed for writers of compilers and interpreters, although
they are also useful for many applications that will interest noncompiler writers. Any
application that looks for patterns in its input or has an input or command language is
a good candidate for flex and bison. Furthermore, they allow for rapid application
prototyping, easy modification, and simple maintenance of programs. To stimulate
your imagination, here are a few things people have used flex and bison, or their pred-
ecessors lex and yacc, to develop:

• The desktop calculator bc

• The tools eqn and pic, typesetting preprocessors for mathematical equations and
complex pictures

• Many other “domain-specific languages” targeted for a particular application

• PCC, the Portable C Compiler used with many Unix systems

• Flex itself

• A SQL database language translator

Scope of This Book
Chapter 1, Introducing Flex and Bison, gives an overview of how and why flex and bison
are used to create compilers and interpreters and demonstrates some simple applica-
tions including a calculator built in flex and bison. It also introduces basic terms we
use throughout the book.

Chapter 2, Using Flex, describes how to use flex. It develops flex applications that count
words in files, handle multiple and nested input files, and compute statistics on C
programs.

Chapter 3, Using Bison, gives a full example using flex and bison to develop a fully
functional desktop calculator with variables, procedures, loops, and conditional ex-
pressions. It shows the use of abstract syntax trees (ASTs), powerful and easy-to-use
data structures for representing parsed input.

xiii

Download at Boykma.Com

Chapter 4, Parsing SQL, develops a parser for the MySQL dialect of the SQL relational
database language. The parser checks the syntax of SQL statements and translates them
into an internal form suitable for an interpreter. It shows the use of Reverse Polish
Notation (RPN), another powerful form used to represent and interpret parsed input.

Chapter 5, A Reference for Flex Specifications, and Chapter 6, A Reference for Bison
Specifications, provide detailed descriptions of the features and options available to flex
and bison programmers. These chapters and the two that follow provide technical
information for the now-experienced flex and bison programmer to use while devel-
oping flex and bison applications.

Chapter 7, Ambiguities and Conflicts, explains bison ambiguities and conflicts, which
are grammar problems that keep bison from creating a parser from a grammar. It then
develops methods that can be used to locate and correct such problems.

Chapter 8, Error Reporting and Recovery, discusses techniques that compiler or inter-
preter designers can use to locate, recognize, and report errors in the compiler input.

Chapter 9, Advanced Flex and Bison, covers reentrant scanners and parsers, Generalized
Left to Right (GLR) parsers that can handle grammars that regular bison parsers can’t,
and interfaces to C++.

The appendix provides the complete grammar and a cross-reference for the SQL parser
discussed in Chapter 4.

The glossary lists technical terms from language and compiler theory.

We presume you are familiar with C, because most examples are in C, flex, or bison,
with a few in C++ and the remainder in SQL or the special-purpose languages devel-
oped within the text.

Conventions Used in This Book
The following conventions are used in this book:

Italic
Used for new terms and concepts when they are introduced.

Constant Width
Used for program listings, as well as within paragraphs to refer to program elements
such as statements, classes, macros, states, rules, all code terms, and files and di-
rectories.

Constant Bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

xiv | Preface

Download at Boykma.Com

$
is the shell prompt.

[]
surround optional elements in a description of program syntax. (Don’t type the
brackets themselves.)

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Getting Flex and Bison
Flex and bison are modern replacements for the classic lex and yacc that were both
developed at Bell Laboratories in the 1970s. Yacc was the first of the two, developed
by Stephen C. Johnson. Lex was designed by Mike Lesk and Eric Schmidt (the same
Eric Schmidt who now heads Google) to work with bison. Both lex and yacc have been
standard Unix utilities since Seventh Edition Unix in the 1970s.

The GNU Project of the Free Software Foundation distributes bison, a foreward-com-
patible replacement for yacc. It was originally written by Robert Corbett and Richard
Stallman. The bison manual is excellent, especially for referencing specific features.
Bison is included with all common distributions of BSD and Linux, but if you want the
most up-to-date version, its home page is:

http://www.gnu.org/software/bison/

BSD and the GNU Project also distribute flex (Fast Lexical Analyzer Generator), “a
rewrite of lex intended to fix some of that tool’s many bugs and deficiencies.” Flex was
originally written by Jef Poskanzer; Vern Paxson and Van Jacobson have considerably
improved it. Common distributions of BSD and Linux include a copy of flex, but if you
want the latest version, it’s now hosted at SourceForge:

http://flex.sourceforge.net/

This Book’s Example Files
The programs in this book are available online as:

ftp://ftp.iecc.com/pub/file/flexbison.zip

Preface | xv

Download at Boykma.Com

http://www.gnu.org/software/bison/
http://flex.sourceforge.net/
ftp://ftp.iecc.com/pub/file/flexbison.zip

They can be downloaded by any web browser or FTP client. The zip format file can be
decoded by the popular freeware unzip utility on Unix-ish and Linux systems or opened
as a compressed folder on Windows XP or newer.

The examples in the book were all tested with flex version 2.5.35 and bison 2.4.1.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Book Title by Some Author. Copyright
2008 O’Reilly Media, Inc., 978-0-596-xxxx-x.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your favorite
technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://my.safaribooksonline.com.

How to Contact Us
Despite all the help, errors remain the author’s responsibility. When you find some, or
if you have other comments, email them to fbook@iecc.com, being sure to include the
name of the book in the subject line to alert the spam filters that you are a real person
rather than a deceased kleptocrat from a developing country. Or drop by the Usenet
group comp.compilers where questions about compiler tools are always on topic.

You can also address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

xvi | Preface

Download at Boykma.Com

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
mailto:fbook@iecc.com

1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596155971

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Acknowledgments
Every book is the work of many people, and this one is no exception. I thank Tony
Mason and Doug Brown, my coauthors of lex & yacc, for permission to adapt parts of
that book. Many people provided useful comments on the draft manuscript, including
Lorenzo Bettini, Joel E. Denny, Danny Dubé, Ben Hanson, Jan Van Katwijk, Jeff Ken-
ton, Timothy Knox, Chris Morley, Ken Rose, and Juha Vihavainen. I particularly thank
Derek M. Jones, who provided a detailed page-by-page review in an unreasonably short
time. Simon St. Laurent, my long-suffering editor, as always shepherded the book
skillfully and without complaint through the editorial and production process.

Preface | xvii

Download at Boykma.Com

http://www.oreilly.com/catalog/9780596155971
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Download at Boykma.Com

CHAPTER 1

Introducing Flex and Bison

Flex and Bison are tools for building programs that handle structured input. They were
originally tools for building compilers, but they have proven to be useful in many other
areas. In this first chapter, we’ll start by looking at a little (but not too much) of the
theory behind them, and then we’ll dive into some examples of their use.

Lexical Analysis and Parsing
The earliest compilers back in the 1950s used utterly ad hoc techniques to analyze the
syntax of the source code of programs they were compiling. During the 1960s, the field
got a lot of academic attention, and by the early 1970s, syntax analysis was a well-
understood field.

One of the key insights was to break the job into two parts: lexical analysis (also called
lexing or scanning) and syntax analysis (or parsing).

Roughly speaking, scanning divides the input into meaningful chunks, called tokens,
and parsing figures out how the tokens relate to each other. For example, consider this
snippet of C code:

alpha = beta + gamma ;

A scanner divides this into the tokens alpha, equal sign, beta, plus sign, gamma, and
semicolon. Then the parser determines that beta + gamma is an expression, and that the
expression is assigned to alpha.

Getting Flex and Bison
Most Linux and BSD systems come with flex and bison as part of the base system. If
your system doesn’t have them, or has out-of-date versions, they’re both easy to install.

Flex is a Sourceforge project, at http://flex.sourceforge.net/. The current version as of
early 2009 was 2.5.35. Changes from version to version are usually minor, so it’s not
essential to update your version if it’s close to .35, but some systems still ship with
version 2.5.4 or 2.5.4a, which is more than a decade old.

1

Download at Boykma.Com

http://flex.sourceforge.net/

Bison is available from http://www.gnu.org/software/bison/. The current version as of
early 2009 was 2.4.1. Bison is under fairly active development, so it’s worth getting an
up-to-date version to see what’s new. Version 2.4 added support for parsers in Java,
for example. BSD users can generally install a current version of flex or bison using the
ports collection. Linux users may be able to find current RPMs. If not, flex and bison
both use the standard GNU build process, so to install them, download and unpack
the current flex and bison tarballs from the web sites, run ./configure and then make
to build each, then become superuser and make install to install them.

Flex and bison both depend on the GNU m4 macroprocessor. Linux and BSD should
all have m4, but in case they don’t, or they have an ancient version, the current GNU
m4 is at http://www.gnu.org/software/m4/.

For Windows users, both bison and flex are included in the Cygwin Linux emulation
environment available at http://www.cygwin.com/. You can use the C or C++ code they
generate either with the Cygwin development tools or with native Windows develop-
ment tools.

Regular Expressions and Scanning
Scanners generally work by looking for patterns of characters in the input. For example,
in a C program, an integer constant is a string of one or more digits, a variable name is
a letter followed by zero or more letters or digits, and the various operators are single
characters or pairs of characters. A straightforward way to describe these patterns is
regular expressions, often shortened to regex or regexp. These are the same kind of
patterns that the editors ed and vi and the search program egrep use to describe text to
search for. A flex program basically consists of a list of regexps with instructions about
what to do when the input matches any of them, known as actions. A flex-generated
scanner reads through its input, matching the input against all of the regexps and doing
the appropriate action on each match. Flex translates all of the regexps into an efficient
internal form that lets it match the input against all the patterns simultaneously, so it’s
just as fast for 100 patterns as for one.*

Our First Flex Program
Unix systems (by which I also mean Unix-ish systems including Linux and the BSDs)
come with a word count program, which reads through a file and reports the number
of lines, words, and characters in the file. Flex lets us write wc in a few dozen lines,
shown in Example 1-1.

* The internal form is known as a deterministic finite automation (DFA). Fortunately, the only thing you really
need to know about DFAs at this point is that they’re fast, and the speed is independent of the number or
complexity of the patterns.

2 | Chapter 1: Introducing Flex and Bison

Download at Boykma.Com

http://www.gnu.org/software/bison/
http://www.gnu.org/software/m4/
http://www.cygwin.com/

Example 1-1. Word count fb1-1.l

/* just like Unix wc */
%{
int chars = 0;
int words = 0;
int lines = 0;
%}

%%

[a-zA-Z]+ { words++; chars += strlen(yytext); }
\n { chars++; lines++; }
. { chars++; }

%%

main(int argc, char **argv)
{
 yylex();
 printf("%8d%8d%8d\n", lines, words, chars);
}

Much of this program should look familiar to C programmers, since most of it is C. A
flex program consists of three sections, separated by %% lines. The first section contains
declarations and option settings. The second section is a list of patterns and actions,
and the third section is C code that is copied to the generated scanner, usually small
routines related to the code in the actions.

In the declaration section, code inside of %{ and %} is copied through verbatim near the
beginning of the generated C source file. In this case it just sets up variables for lines,
words, and characters.

In the second section, each pattern is at the beginning of a line, followed by the C code
to execute when the pattern matches. The C code can be one statement or possibly a
multiline block in braces, { }. (Each pattern must start at the beginning of the line,
since flex considers any line that starts with whitespace to be code to be copied into
the generated C program.)

In this program, there are only three patterns. The first one, [a-zA-Z]+, matches a word.
The characters in brackets, known as a character class, match any single upper- or
lowercase letter, and the + sign means to match one or more of the preceding thing,
which here means a string of letters or a word. The action code updates the number of
words and characters seen. In any flex action, the variable yytext is set to point to the
input text that the pattern just matched. In this case, all we care about is how many
characters it was so we can update the character count appropriately.

The second pattern, \n, just matches a new line. The action updates the number of lines
and characters.

Regular Expressions and Scanning | 3

Download at Boykma.Com

dksharp
Highlight

dksharp
Highlight

dksharp
Highlight

The final pattern is a dot, which is regex-ese for any character. (It’s similar to a ? in
shell scripts.) The action updates the number of characters. And that’s all the patterns
we need.†

The C code at the end is a main program that calls yylex(), the name that flex gives to
the scanner routine, and then prints the results. In the absence of any other arrange-
ments, the scanner reads from the standard input. So let’s run it.

$ flex fb1-1.l
$ cc lex.yy.c -lfl
$./a.out
The boy stood on the burning deck
shelling peanuts by the peck
^D
2 12 63
$

First we tell flex to translate our program, and in classic Unix fashion since there are
no errors, it does so and says nothing. Then we compile lex.yy.c, the C program it
generated; link it with the flex library, -lfl; run it; and type a little input for it to count.
Seems to work.

The actual wc program uses a slightly different definition of a word, a string of non-
whitespace characters. Once we look up what all the whitespace characters are, we
need only replace the line that matches words with one that matches a string of non-
whitespace characters:

[^ \t\n\r\f\v]+ { words++; chars += strlen(yytext); }

The ^ at the beginning of the character class means to match any character other than
the ones in the class, and the + once again means to match one or more of the preceding
patterns. This demonstrates one of flex’s strengths—it’s easy to make small changes to
patterns and let flex worry about how they might affect the generated code.

Programs in Plain Flex
Some applications are simple enough that you can write the whole thing in flex, or in
flex with a little bit of C. For example, Example 1-2 shows the skeleton of a translator
from English to American.

Example 1-2. English to American fb1-2.l

/* English -> American */
%%
"colour" { printf("color"); }
"flavour" { printf("flavor"); }

† The observant reader may ask, if a dot matches anything, won’t it also match the letters the first pattern is
supposed to match? It does, but flex breaks a tie by preferring longer matches, and if two patterns match the
same thing, it prefers the pattern that appears first in the flex program. This is an utter hack, but a very useful
one we’ll see frequently.

4 | Chapter 1: Introducing Flex and Bison

Download at Boykma.Com

dksharp
Highlight

"clever" { printf("smart"); }
"smart" { printf("elegant"); }
"conservative" { printf("liberal"); }
 … lots of other words …
. { printf("%s", yytext); }
%%

It reads through its input, printing the American version when it matches an English
word and passing everything else through. This example is somewhat unrealistic
(smart can also mean hurt, after all), but flex is not a bad tool to use for doing modest
text transformations and for programs that collect statistics on input. More often than
not, though, you’ll want to use flex to generate a scanner that divides the input into
tokens that are then used by other parts of your program.

Putting Flex and Bison Together
The first program we’ll write using both flex and bison is a desk calculator. First we’ll
write a scanner, and then we’ll write a parser and splice the two of them together.

To keep things simple, we’ll start by recognizing only integers, four basic arithmetic
operators, and a unary absolute value operator (Example 1-3).

Example 1-3. A simple flex scanner fb1-3.l

/* recognize tokens for the calculator and print them out */
%%
"+" { printf("PLUS\n"); }
"-" { printf("MINUS\n"); }
"*" { printf("TIMES\n"); }
"/" { printf("DIVIDE\n"); }
"|" { printf("ABS\n"); }
[0-9]+ { printf("NUMBER %s\n", yytext); }
\n { printf("NEWLINE\n"); }
[\t] { }
. { printf("Mystery character %s\n", yytext); }
%%

The first five patterns are literal operators, written as quoted strings, and the actions,
for now, just print a message saying what matched. The quotes tell flex to use the strings
as is, rather than interpreting them as regular expressions.

The sixth pattern matches an integer. The bracketed pattern [0-9]matches any single
digit, and the following + sign means to match one or more of the preceding item, which
here means a string of one or more digits. The action prints out the string that’s
matched, using the pointer yytext that the scanner sets after each match.

The seventh pattern matches a newline character, represented by the usual C \n se-
quence.

The eighth pattern ignores whitespace. It matches any single space or tab (\t), and the
empty action code does nothing.

Regular Expressions and Scanning | 5

Download at Boykma.Com

The final pattern is the catchall to match anything the other patterns didn’t. Its action
code prints a suitable complaint.

These nine patterns now provide rules to match anything that the user might enter. As
we continue to develop the calculator, we’ll add more rules to match more tokens, but
these will do to get us started.

In this simple flex program, there’s no C code in the third section. The flex library
(-lfl) provides a tiny main program that just calls the scanner, which is adequate for
this example.

So let’s try out our scanner:

$ flex fb1-3.l
$ cc lex.yy.c -lfl
$./a.out
12+34
NUMBER 12
PLUS
NUMBER 34
NEWLINE
 5 6 / 7q
NUMBER 5
NUMBER 6
DIVIDE
NUMBER 7
Mystery character q
NEWLINE
^D
$

First we run flex, which translates the scanner into a C program called lex.yy.c, then
we compile the C program, and finally we run it. The output shows that it recognizes
numbers as numbers, it recognizes operators as operators, and the q in the last line of
input is caught by the catchall pattern at the end. (That ^D is a Unix/Linux end-of-file
character. On Windows you’d type ^Z.)

The Scanner as Coroutine
Most programs with flex scanners use the scanner to return a stream of tokens that are
handled by a parser. Each time the program needs a token, it calls yylex(), which reads
a little input and returns the token. When it needs another token, it calls yylex() again.
The scanner acts as a coroutine; that is, each time it returns, it remembers where it was,
and on the next call it picks up where it left off.

Within the scanner, when the action code has a token ready, it just returns it as the
value from yylex(). The next time the program calls yylex(), it resumes scanning with
the next input characters. Conversely, if a pattern doesn’t produce a token for the
calling program and doesn’t return, the scanner will just keep going within the same
call to yylex(), scanning the next input characters. This incomplete snippet shows two

6 | Chapter 1: Introducing Flex and Bison

Download at Boykma.Com

patterns that return tokens, one for the + operator and one for a number, and a white-
space pattern that does nothing, thereby ignoring what it matched.

"+" { return ADD; }
[0-9]+ { return NUMBER; }
[\t] { /* ignore whitespace */ }

This apparent casualness about whether action code returns often confuses new flex
users, but the rule is actually quite simple: If action code returns, scanning resumes on
the next call to yylex(); if it doesn’t return, scanning resumes immediately.

Now we’ll modify our scanner so it returns tokens that a parser can use to implement
a calculator.

Tokens and Values
When a flex scanner returns a stream of tokens, each token actually has two parts, the
token and the token’s value. The token is a small integer. The token numbers are ar-
bitrary, except that token zero always means end-of-file. When bison creates a parser,
bison assigns the token numbers automatically starting at 258 (this avoids collisions
with literal character tokens, discussed later) and creates a .h with definitions of the
tokens numbers. But for now, we’ll just define a few tokens by hand:

NUMBER = 258,
ADD = 259,
SUB = 260,
MUL = 261,
DIV = 262,
ABS = 263,
EOL = 264 end of line

(Well, actually, it’s the list of token numbers that bison will create, as we’ll see a few
pages ahead. But these token numbers are as good as any.)

A token’s value identifies which of a group of similar tokens this one is. In our scanner,
all numbers are NUMBER tokens, with the value saying what number it is. When parsing
more complex input with names, floating-point numbers, string literals, and the like,
the value says which name, number, literal, or whatever, this token is. Our first version
of the calculator’s scanner, with a small main program for debugging, is in Example 1-4.

Example 1-4. Calculator scanner fb1-4.l

/* recognize tokens for the calculator and print them out */
%{
 enum yytokentype {
 NUMBER = 258,
 ADD = 259,
 SUB = 260,
 MUL = 261,
 DIV = 262,
 ABS = 263,
 EOL = 264

Regular Expressions and Scanning | 7

Download at Boykma.Com

 };

 int yylval;
%}

%%
"+" { return ADD; }
"-" { return SUB; }
"*" { return MUL; }
"/" { return DIV; }
"|" { return ABS; }
[0-9]+ { yylval = atoi(yytext); return NUMBER; }
\n { return EOL; }
[\t] { /* ignore whitespace */ }
. { printf("Mystery character %c\n", *yytext); }
%%
main(int argc, char **argv)
{
 int tok;

 while(tok = yylex()) {
 printf("%d", tok);
 if(tok == NUMBER) printf(" = %d\n", yylval);
 else printf("\n");
 }
}

We define the token numbers in a C enum. Then we make yylval, the variable that stores
the token value, an integer, which is adequate for the first version of our calculator.
(Later we’ll see that the value is usually defined as a union so that different kinds of
tokens can have different kinds of values, e.g., a floating-point number or a pointer to
a symbol’s entry in a symbol table.)

The list of patterns is the same as in the previous example, but the action code is dif-
ferent. For each of the tokens, the scanner returns the appropriate code for the token;
for numbers, it turns the string of digits into an integer and stores it in yylval before
returning. The pattern that matches whitespace doesn’t return, so the scanner just
continues to look for what comes next.

For testing only, a small main program calls yylex(), prints out the token values, and,
for NUMBER tokens, also prints yylval.

$ flex fb1-4.l
$ cc lex.yy.c -lfl
$./a.out
a / 34 + |45
Mystery character a
262
258 = 34
259
263
258 = 45
264

8 | Chapter 1: Introducing Flex and Bison

Download at Boykma.Com

^D
$

Now that we have a working scanner, we turn our attention to parsing.

Where Did Flex and Bison Come From?
Bison is descended from yacc, a parser generator written between 1975 and 1978 by
Stephen C. Johnson at Bell Labs. As its name, short for “yet another compiler compiler,”
suggests, many people were writing parser generators at the time. Johnson’s tool com-
bined a firm theoretical foundation from parsing work by D. E. Knuth, which made its
parsers extremely reliable, and a convenient input syntax. These made it extremely
popular among users of Unix systems, although the restrictive license under which Unix
was distributed at the time limited its use outside of academia and the Bell System. In
about 1985, Bob Corbett, a graduate student at the University of California, Berkeley,
reimplemented yacc using somewhat improved internal algorithms, which evolved into
Berkeley yacc. Since his version was faster than Bell’s yacc and was distributed under
the flexible Berkeley license, it quickly became the most popular version of yacc.
Richard Stallman of the Free Software Foundation (FSF) adapted Corbett’s work for
use in the GNU project, where it has grown to include a vast number of new features
as it has evolved into the current version of bison. Bison is now maintained as a project
of the FSF and is distributed under the GNU Public License.

In 1975, Mike Lesk and summer intern Eric Schmidt wrote lex, a lexical analyzer gen-
erator, with most of the programming being done by Schmidt. They saw it both as a
standalone tool and as a companion to Johnson’s yacc. Lex also became quite popular,
despite being relatively slow and buggy. (Schmidt nonetheless went on to have a fairly
successful career in the computer industry where he is now the CEO of Google.)

In about 1987, Vern Paxson of the Lawrence Berkeley Lab took a version of lex written
in ratfor (an extended Fortran popular at the time) and translated it into C, calling it
flex, for “Fast Lexical Analyzer Generator.” Since it was faster and more reliable than
AT&T lex and, like Berkeley yacc, available under the Berkeley license, it has com-
pletely supplanted the original lex. Flex is now a SourceForge project, still under the
Berkeley license.

Grammars and Parsing
The parser’s job is to figure out the relationship among the input tokens. A common
way to display such relationships is a parse tree. For example, under the usual rules of
arithmetic, the arithmetic expression 1 * 2 + 3 * 4 + 5 would have the parse tree in
Figure 1-1.

Grammars and Parsing | 9

Download at Boykma.Com

Figure 1-1. Expression parse tree

Multiplication has higher precedence than addition, so the first two expressions are
1 * 2 and 3 * 4. Then those two expressions are added together, and that sum is then
added to 5. Each branch of the tree shows the relationship between the tokens or sub-
trees below it. The structure of this particular tree is quite simple and regular with two
descendants under each node (that’s why we use a calculator as the first example), but
any bison parser makes a parse tree as it parses its input. In some applications, it creates
the tree as a data structure in memory for later use. In others, the tree is just implicit in
the sequence of operations the parser does.

BNF Grammars
In order to write a parser, we need some way to describe the rules the parser uses to
turn a sequence of tokens into a parse tree. The most common kind of language that
computer parsers handle is a context-free grammar (CFG).‡ The standard form to write
down a CFG is Backus-Naur Form (BNF), created around 1960 to describe Algol 60
and named after two members of the Algol 60 committee.

Fortunately, BNF is quite simple. Here’s BNF for simple arithmetic expressions enough
to handle 1 * 2 + 3 * 4 + 5:

<exp> ::= <factor>
 | <exp> + <factor>
<factor> ::= NUMBER
 | <factor> * NUMBER

Each line is a rule that says how to create a branch of the parse tree. In BNF, ::= can
be read “is a” or “becomes,” and | is “or,” another way to create a branch of the same
kind. The name on the left side of a rule is a symbol or term. By convention, all tokens
are considered to be symbols, but there are also symbols that are not tokens.

‡ CFGs are also known as phrase-structure grammars or type-3 languages. Computer theorists and natural-
language linguists independently developed them at about the same time in the late 1950s. If you’re a
computer scientist, you usually call them CFGs, and if you’re a linguist, you usually call them PSGs or type-3,
but they’re the same thing.

10 | Chapter 1: Introducing Flex and Bison

Download at Boykma.Com

Useful BNF is invariably quite recursive, with rules that refer to themselves directly or
indirectly. These simple rules can match an arbitrarily complex sequence of additions
and multiplications by applying them recursively.

Bison’s Rule Input Language
Bison rules are basically BNF, with the punctuation simplified a little to make them
easier to type. Example 1-5 shows the bison code, including the BNF, for the first
version of our calculator.

Example 1-5. Simple calculator fb1-5.y

/* simplest version of calculator */
%{
#include <stdio.h>
%}

/* declare tokens */
%token NUMBER
%token ADD SUB MUL DIV ABS
%token EOL

%%

calclist: /* nothing */ matches at beginning of input
 | calclist exp EOL { printf("= %d\n", $1); } EOL is end of an expression
 ;

exp: factor default $$ = $1
 | exp ADD factor { $$ = $1 + $3; }
 | exp SUB factor { $$ = $1 - $3; }
 ;

factor: term default $$ = $1
 | factor MUL term { $$ = $1 * $3; }
 | factor DIV term { $$ = $1 / $3; }
 ;

term: NUMBER default $$ = $1
 | ABS term { $$ = $2 >= 0? $2 : - $2; }
;
%%
main(int argc, char **argv)
{
 yyparse();
}

yyerror(char *s)
{
 fprintf(stderr, "error: %s\n", s);
}

Grammars and Parsing | 11

Download at Boykma.Com

Bison programs have (not by coincidence) the same three-part structure as flex pro-
grams, with declarations, rules, and C code. The declarations here include C code to
be copied to the beginning of the generated C parser, again enclosed in %{ and %}.
Following that are %token token declarations, telling bison the names of the symbols in
the parser that are tokens. By convention, tokens have uppercase names, although bison
doesn’t require it. Any symbols not declared as tokens have to appear on the left side
of at least one rule in the program. (If a symbol neither is a token nor appears on the
left side of a rule, it’s like an unreferenced variable in a C program. It doesn’t hurt
anything, but it probably means the programmer made a mistake.)

The second section contains the rules in simplified BNF. Bison uses a single colon rather
than ::=, and since line boundaries are not significant, a semicolon marks the end of a
rule. Again, like flex, the C action code goes in braces at the end of each rule.

Bison automatically does the parsing for you, remembering what rules have been
matched, so the action code maintains the values associated with each symbol. Bison
parsers also perform side effects such as creating data structures for later use or, as in
this case, printing out results. The symbol on the left side of the first rule is the start
symbol, the one that the entire input has to match. There can be, and usually are, other
rules with the same start symbol on the left.

Each symbol in a bison rule has a value; the value of the target symbol (the one to the
left of the colon) is called $$ in the action code, and the values on the right are numbered
$1, $2, and so forth, up to the number of symbols in the rule. The values of tokens are
whatever was in yylval when the scanner returned the token; the values of other sym-
bols are set in rules in the parser. In this parser, the values of the factor, term, and
exp symbols are the value of the expression they represent.

In this parser, the first two rules, which define the symbol calcset, implement a loop
that reads an expression terminated by a newline and prints its value. The definition
of calclist uses a common two-rule recursive idiom to implement a sequence or list:
the first rule is empty and matches nothing; the second adds an item to the list. The
action in the second rule prints the value of the exp in $2.

The rest of the rules implement the calculator. The rules with operators such as exp
ADD factor and ABS term do the appropriate arithmetic on the symbol values. The rules
with a single symbol on the right side are syntactic glue to put the grammar together;
for example, an exp is a factor. In the absence of an explicit action on a rule, the parser
assigns $1 to $$. This is a hack, albeit a very useful one, since most of the time it does
the right thing.

How About Parsing English?
For a very long time, as far back as the 1950s, people have been trying to program
computers to handle natural languages, languages spoken by people rather than by
computers, a task that turns out to be extremely difficult. One approach is to parse
them with the same techniques used for computer languages, as in this fragment:

12 | Chapter 1: Introducing Flex and Bison

Download at Boykma.Com

simple_sentence: subject verb object
 | subject verb object prep_phrase ;

subject: NOUN
 | PRONOUN
 | ADJECTIVE subject ;

verb: VERB
 | ADVERB VERB
 | verb VERB ;

object: NOUN
 | ADJECTIVE object ;

prep_phrase: PREPOSITION NOUN ;

Unfortunately, it doesn’t work beyond small and unrealistic subsets of natural lan-
guages. Although natural languages have grammars, the grammars are extremely com-
plex and not easy to write down or to handle in software. It remains an interesting and
open question why this should be. Why are languages we invent for our computers so
much simpler than the ones we speak?

Compiling Flex and Bison Programs Together
Before we build the scanner and parser into a working program, we have to make some
small changes to the scanner in Example 1-4 so we can call it from the parser. In par-
ticular, rather than defining explicit token values in the first part, we include a header
file that bison will create for us, which includes both definitions of the token numbers
and a definition of yylval. We also delete the testing main routine in the third section
of the scanner, since the parser will now call the scanner. The first part of the scanner
now looks like Example 1-6.

Example 1-6. Calculator scanner fb1-5.l

%{
include "fb1-5.tab.h"
%}
%% same rules as before, and no code in the third section

The build process is now complex enough to be worth putting into a Makefile:

part of the makefile
fb1-5: fb1-5.l fb1-5.y
 bison -d fb1-5.y
 flex fb1-5.l
 cc -o $@ fb1-5.tab.c lex.yy.c -lfl

First it runs bison with the -d (for “definitions” file) flag, which creates fb1-5.tab.c
and fb1-5.tab.h, and it runs flex to create lex.yy.c. Then it compiles them together,
along with the flex library. Try it out, and in particular verify that it handles operator
precedence correctly, doing multiplication and division before addition and
subtraction:

Grammars and Parsing | 13

Download at Boykma.Com

$./fb1-5
2 + 3 * 4
= 14
2 * 3 + 4
= 10
20 / 4 - 2
= 3
20 - 4 / 2
= 18

Ambiguous Grammars: Not Quite
The reader may be wondering at this point whether the grammar in Example 1-5 is
needlessly complicated. Why not just write this?

exp: exp ADD exp
 | exp SUB exp
 | exp MUL exp
 | exp DIV exp
 | ABS exp
 | NUMBER
 ;

There are two answers: precedence and ambiguity. The separate symbols for term,
factor, and exp tell bison to handle ABS, then MUL and DIV, and then ADD and SUB. In
general, whenever a grammar has multiple levels of precedence where one kind of op-
erator binds “tighter” than another, the parser will need a level of rule for each level.

Well, then, OK, how about this?

exp: exp ADD exp
 | exp SUB exp
 | factor
 ;
 similarly for factor and term

One of bison’s greatest strengths, and simultaneously one of its most annoying aspects,
is that it will not parse an ambiguous grammar. That is, any parser that bison creates
has exactly one way to parse any input that it parses, and the parser will accept exactly
that grammar. The previous grammar is ambiguous, because input such as 1 - 2 + 3
could be parsed either as (1-2) + 3 or as 1 - (2+3), two different expressions with
different values. Although there are some cases where ambiguity doesn’t matter (e.g.,
1+2+3), in most cases the ambiguity really is an error, and the grammar needs to be
fixed. The way we wrote the grammar in Example 1-5 makes expressions unambigu-
ously group to the left. If a grammar is ambiguous, bison reports conflicts, places where
there are two different possible parses for a given bit of input. It creates a parser anyway,
picking one option in each conflict, but that choice means the language it’s parsing
isn’t necessarily the one you tried to specify. We discuss this at length in Chapter 7.

Bison’s usual parsing algorithm can look ahead one token to decide what rules match
the input. Some grammars aren’t ambiguous but have places that require more than

14 | Chapter 1: Introducing Flex and Bison

Download at Boykma.Com

one token of lookahead to decide what rules will match. These also cause conflicts,
although it is usually possible to rewrite the grammar so that one token lookahead is
enough.

Actually, the previous discussion about ambiguity is not quite true. Since expression
grammars are so common and useful, and since writing separate rules for each prece-
dence level is tedious, bison has some special features that let you write an expression
grammar in the natural way with one rule per operator in the form exp OP exp and just
tell it what precedence and grouping rules to use to resolve the ambiguity. We’ll learn
about these in Chapter 3. Also, bison has an alternative parsing technique called GLR
that can handle ambiguous grammars and arbitrary lookahead, tracking all the possible
parses that match the input in parallel. We cover this in Chapter 9.

Adding a Few More Rules
One of the nicest things about using flex and bison to handle a program’s input is that
it’s often quite easy to make small changes to the grammar. Our expression language
would be a lot more useful if it could handle parenthesized expressions, and it would
be nice if it could handle comments, using // syntax. To do this, we need only add one
rule to the parser and three to the scanner.

In the parser we define two new tokens, OP and CP for open and close parentheses, and
add a rule to make a parenthesized expression a term:

%token OP CP in the declaration section
 ...
%%
term: NUMBER
 | ABS term { $$ = $2 >= 0? $2 : - $2; }
 | OP exp CP { $$ = $2; } New rule
 ;

Note the action code in the new rule assigns $2, the value of the expression in the
parentheses, to $$.

The scanner has two new rules to recognize the two new tokens and one new rule to
ignore two slashes followed by arbitrary text. Since a dot matches anything except a
newline, .* will gobble up the rest of the line.

"(" { return OP; }
")" { return CP; }
"//".* /* ignore comments */

That’s it—rebuild the calculator, and now it handles parenthesized expressions and
comments.

Adding a Few More Rules | 15

Download at Boykma.Com

Flex and Bison vs. Handwritten Scanners and Parsers
The two example programs in this chapter, word count and a calculator, are both simple
enough that we could without too much trouble have written them directly in C. But
there is little reason to do so when developing a program. The pattern-matching tech-
nique that flex uses is quite fast and is usually about the same speed as a handwritten
scanner. For more complex scanners with many patterns, a flex scanner may even be
faster, since handwritten code will usually do many comparisons per character, while
flex always does one. The flex version of a scanner is invariably much shorter than the
equivalent C, which makes it a lot easier to debug. In general, if the rules for breaking
an input stream into tokens can be described by regular expressions, flex is the tool of
choice.

A Handwritten Scanner
If the lexical syntax of a language isn’t too complicated, a handwritten scanner can be
a reasonable alternative to a flex scanner. Here’s a handwritten C equivalent of the
scanner in Example 1-6. This scanner will probably run a little faster than the flex
version, but it’s a lot harder to modify to add or change token types. If you do plan to
use a handwritten scanner, prototype it in flex first.

/*
 * Handwritten version of scanner for calculator
 */

include <stdio.h>
include "fb1-5.tab.h"

FILE *yyin;
static int seeneof = 0;

int
yylex(void)
{
 if(!yyin) yyin = stdin;
 if(seeneof) return 0; /* saw EOF last time */

 while(1) {
 int c = getc(yyin);

 if(isdigit(c)) {
 int i = c - '0';

 while(isdigit(c = getc(yyin)))
 i = (10*i) + c-'0';
 yylval = i;
 if(c == EOF) seeneof = 1;
 else ungetc(c, yyin);
 return NUMBER;
 }

 switch(c) {
 case '+': return ADD; case '-': return SUB;

16 | Chapter 1: Introducing Flex and Bison

Download at Boykma.Com

 case '*': return MUL; case '|': return ABS;
 case '(': return OP; case ')': return CP;
 case '\n': return EOL;
 case ' ': case '\t': break; /* ignore these */
 case EOF: return 0; /* standard end-of-file token */

 case '/': c = getc(yyin);
 if(c == '/') { /* it's a comment */
 while((c = getc(yyin)) != '\n')
 if(c == EOF) return 0; /* EOF in comment line */
 break;
 }
 if(c == EOF) seeneof = 1; /* it's division */
 else ungetc(c, yyin);
 return DIV;

 default: yyerror("Mystery character %c\n", c); break;
 }
 }
}

Similarly, a bison parser is much shorter and easier to debug than the equivalent hand-
written parser, particularly because of bison’s verification that the grammar is unam-
biguous.

Exercises
1. Will the calculator accept a line that contains only a comment? Why not? Would

it be easier to fix this in the scanner or in the parser?

2. Make the calculator into a hex calculator that accepts both hex and decimal num-
bers. In the scanner add a pattern such as 0x[a-f0-9]+ to match a hex number, and
in the action code use strtol to convert the string to a number that you store in
yylval; then return a NUMBER token. Adjust the output printf to print the result in
both decimal and hex.

3. (extra credit) Add bit operators such as AND and OR to the calculator. The obvious
operator to use for OR is a vertical bar, but that’s already the unary absolute value
operator. What happens if you also use it as a binary OR operator, for example, exp
ABS factor?

4. Does the handwritten version of the scanner from Example 1-4 recognize exactly
the same tokens as the flex version?

5. Can you think of languages for which flex wouldn’t be a good tool to write a
scanner?

6. Rewrite the word count program in C. Run some large files through both versions.
Is the C version noticeably faster? How much harder was it to debug?

Exercises | 17

Download at Boykma.Com

Download at Boykma.Com

CHAPTER 2

Using Flex

In this chapter we’ll take a closer look at flex as a standalone tool, with some examples
that exercise most of its C language capabilities. All of flex’s facilities are described in
Chapter 5, and the usage of flex scanners in C++ programs is described in Chapter 9.

Regular Expressions
The patterns at the heart of every flex scanner use a rich regular expression language.
A regular expression is a pattern description using a metalanguage, a language that you
use to describe what you want the pattern to match. Flex’s regular expression language
is essentially POSIX-extended regular expressions (which is not surprising considering
their shared Unix heritage). The metalanguage uses standard text characters, some of
which represent themselves and others of which represent patterns. All characters other
than the ones listed below, including all letters and digits, match themselves.

The characters with special meaning in regular expressions are:

.
Matches any single character except the newline character (\n).

[]
A character class that matches any character within the brackets. If the first char-
acter is a circumflex (^), it changes the meaning to match any character except the
ones within the brackets. A dash inside the square brackets indicates a character
range; for example, [0-9] means the same thing as [0123456789] and [a-z] means
any lowercase letter. A - or] as the first character after the [is interpreted literally
to let you include dashes and square brackets in character classes. POSIX intro-
duced other special square bracket constructs that are useful when handling non-
English alphabets, described later in this chapter. Other metacharacters do not
have any special meaning within square brackets except that C escape sequences
starting with \ are recognized. Character ranges are interpreted relative to the
character coding in use, so the range [A-z] with ASCII character coding would
match all uppercase and lowercase letters, as well as six punctuation characters

19

Download at Boykma.Com

whose codes fall between the code for Z and the code for a. In practice, useful ranges
are ranges of digits, of uppercase letters, or of lowercase letters.

[a-z]{-}[jv]
A differenced character class, with the characters in the first class omitting the
characters in the second class (only in recent versions of flex).

^
Matches the beginning of a line as the first character of a regular expression. Also
used for negation within square brackets.

$
Matches the end of a line as the last character of a regular expression.

{}
If the braces contain one or two numbers, indicate the minimum and maximum
number of times the previous pattern can match. For example, A{1,3} matches one
to three occurrences of the letter A, and 0{5} matches 00000. If the braces contain
a name, they refer to a named pattern by that name.

\
Used to escape metacharacters and as part of the usual C escape sequences; for
example, \n is a newline character, while * is a literal asterisk.

*
Matches zero or more copies of the preceding expression. For example, [\t]* is
a common pattern to match optional spaces and tabs, that is, whitespace, which
matches “ ”, “ <tab><tab>”, or an empty string.

+
Matches one or more occurrences of the preceding regular expression. For exam-
ple, [0-9]+ matches strings of digits such as 1, 111, or 123456 but not an empty
string.

?
Matches zero or one occurrence of the preceding regular expression. For example,
-?[0-9]+ matches a signed number including an optional leading minus sign.

|
The alternation operator; matches either the preceding regular expression or the
following regular expression. For example, faith|hope|charity matches any of the
three virtues.

"..."
Anything within the quotation marks is treated literally. Metacharacters other than
C escape sequences lose their meaning. As a matter of style, it’s good practice to
quote any punctuation characters intended to be matched literally.

()
Groups a series of regular expressions together into a new regular expression. For
example, (01) matches the character sequence 01, and a(bc|de) matches abc or
ade. Parentheses are useful when building up complex patterns with *, +, ?, and |.

20 | Chapter 2: Using Flex

Download at Boykma.Com

/
Trailing context, which means to match the regular expression preceding the slash
but only if followed by the regular expression after the slash. For example, 0/1
matches 0 in the string 01 but would not match anything in the string 0 or 02. The
material matched by the pattern following the slash is not “consumed” and remains
to be turned into subsequent tokens. Only one slash is permitted per pattern.

The repetition operators affect the smallest preceding expression, so abc+ matches ab
followed by one or more c’s. Use parentheses freely to be sure your expressions match
what you want, such as (abc)+ to match one or more repetitions of abc.

Regular Expression Examples
We can combine these characters to make quite complex and useful regular expression
patterns. For example, consider the surprisingly difficult job of writing a pattern to
match Fortran-style numbers, which consist of an optional sign, a string of digits that
may contain a decimal point, optionally an exponent that is the letter E, an optional
sign, and a string of digits. A pattern for an optional sign and a string of digits is simple
enough:

[-+]?[0-9]+

Note that we put the hyphen as the first thing in [-+] so it wouldn’t be taken to mean
a character range.

Writing the pattern to match a string of digits with an optional decimal point is harder,
because the decimal point can come at the beginning or end of the number. Here’s a
few near misses:

[-+]?[0-9.]+ matches too much, like 1.2.3.4
[-+]?[0-9]+\.?[0-9]+ matches too little, misses .12 or 12.
[-+]?[0-9]*\.?[0-9]+ doesn't match 12.
[-+]?[0-9]+\.?[0-9]* doesn't match .12
[-+]?[0-9]*\.?[0-9]* matches nothing, or a dot with no digits at all

It turns out that no combination of character classes, ?, *, and + will match a number
with an optional decimal point. Fortunately, the alternation operator | does the trick
by allowing the pattern to combine two versions, each of which individually isn’t quite
sufficient:

[-+]?([0-9]*\.?[0-9]+|[0-9]+\.)
[-+]?([0-9]*\.?[0-9]+|[0-9]+\.[0-9]*) This is overkill but also works

The second example is internally ambiguous, because there are many strings that match
either of the alternates, but that is no problem for flex’s matching algorithm. (Flex also
allows two different patterns to match the same input, which is also useful but requires
more care by the programmer.)

Now we need to add on the optional exponent, for which the pattern is quite simple:

E(+|-)?[0-9]+

Regular Expressions | 21

Download at Boykma.Com

(We did the two sign characters as an alternation here rather than a character class; it’s
purely a matter of taste.) Now we glue the two together to get a Fortran number pattern:

[-+]?([0-9]*\.?[0-9]+|[0-9]+\.)(E(+|-)?[0-9]+)?

Since the exponent part is optional, we used parens and a question mark to make it an
optional part of the pattern. Note that our pattern now includes nested optional parts,
which work fine and as shown here are often very useful.

This is about as complex a pattern as you’ll find in most flex scanners. It’s worth reit-
erating that complex patterns do not make the scanner any slower.* Write your patterns
to match what you need to match, and trust flex to handle them.

How Flex Handles Ambiguous Patterns
Most flex programs are quite ambiguous, with multiple patterns that can match the
same input. Flex resolves the ambiguity with two simple rules:

• Match the longest possible string every time the scanner matches input.

• In the case of a tie, use the pattern that appears first in the program.

These turn out to do the right thing in the vast majority of cases. Consider this snippet
from a scanner for C source code:

"+" { return ADD; }
"=" { return ASSIGN; }
"+=" { return ASSIGNADD; }

"if" { return KEYWORDIF; }
"else" { return KEYWORDELSE; }
[a-zA-Z_][a-zA-Z0-9_]* { return IDENTIFIER; }

For the first three patterns, the string += is matched as one token, since += is longer than
+. For the last three patterns, so long as the patterns for keywords precede the pattern
that matches an identifier, the scanner will match keywords correctly.

Context-Dependent Tokens
In some languages, scanning is context dependent. For example, in Pascal, 1. is usually
a floating-point number, but in a declaration, 1..2 is two integers separated by a ..
token. Flex provides start states, which can turn patterns on and off dynamically and
are generally sufficient to handle such context dependencies. We discuss start states
later in this chapter.

* There’s one exception: If there are any / operators at all in a flex program, the whole scanner is slightly slower
because of the added logic to handle backing up over the input that is matched but not consumed by trailing
context. But in practice such scanners are usually still plenty fast.

22 | Chapter 2: Using Flex

Download at Boykma.Com

File I/O in Flex Scanners
Flex scanners will read from the standard input unless you tell them otherwise. In
practice, most scanners read from files. We’ll modify the word count program from
Example 1-1 to read from files, like the real wc program does.

The I/O options available in scanners generated by flex and its predecessor lex have
undergone extensive evolution over the past 30 years, so there are several different ways
to manage a scanner’s input and output. Unless you make other arrangements, a scan-
ner reads from the stdio FILE called yyin, so to read a single file, you need only set it
before the first call to yylex. In Example 2-1, we add the ability to specify an input file
to the word count program from Example 1-1.

Example 2-1. Word count, reading one file

/* even more like Unix wc */
%option noyywrap
%{
int chars = 0;
int words = 0;
int lines = 0;
%}

%%

[a-zA-Z]+ { words++; chars += strlen(yytext); }
\n { chars++; lines++; }
. { chars++; }

%%

main(argc, argv)
int argc;
char **argv;
{
 if(argc > 1) {
 if(!(yyin = fopen(argv[1], "r"))) {
 perror(argv[1]);
 return (1);
 }
 }

 yylex();
 printf("%8d%8d%8d\n", lines, words, chars);
}

The only differences from Example 1-1 are in the code in the third section. The main
routine opens a filename passed on the command line, if the user specified one, and
assigns the FILE to yyin. Otherwise, yyin is left unset, in which case yylex automatically
sets it to stdin.

File I/O in Flex Scanners | 23

Download at Boykma.Com

The Flex Library
Lex and flex have always come with a small library now known as -lfl that defines a
default main routine, as well as a default version of yywrap, a wart left over from the
earliest days of lex.

When a lex scanner reached the end of yyin, it called yywrap(). The idea was that if
there was another input file, yywrap could adjust yyin and return 0 to resume scanning.
If that was really the end of the input, it returned 1 to the scanner to say that it was
done. Although subsequent versions of lex and flex have faithfully preserved yywrap, in
30 years I have never seen a use of yywrap that wouldn’t be better handled by flex’s
other I/O management features. In practice, everyone used the default yywrap from the
flex library, which always returns 1, or put a one-line equivalent in their programs.
Modern versions of flex let you say %option noyywrap at the top of your scanner to tell
it not to call yywrap, and from here on, we’ll always do that.

The default main program is slightly useful for testing and for quick flex hacks, al-
though, again, in any nontrivial flex program, you always have your own main program
that at least sets up the scanner’s input. Here’s what the library version does:

int main()
{
 while (yylex() != 0) ;
 return 0;
}

Most flex programs now use %option noyywrap and provide their own main routine, so
they don’t need the flex library.

Reading Several Files
The real version of wc handles multiple files, so Example 2-2 is an improved version of
our program that does so as well. For programs with simple I/O needs that read each
input file from beginning to end, flex provides the routine yyrestart(f), which tells the
scanner to read from stdio file f.

Example 2-2. Word count, reading many files

/* fb2-2 read several files */
%option noyywrap

%{
int chars = 0;
int words = 0;
int lines = 0;

int totchars = 0;
int totwords = 0;
int totlines = 0;
%}

24 | Chapter 2: Using Flex

Download at Boykma.Com

%%

[a-zA-Z]+ { words++; chars += strlen(yytext); }
\n { chars++; lines++; }
. { chars++; }

%%

main(argc, argv)
int argc;
char **argv;
{
 int i;

 if(argc < 2) { /* just read stdin */
 yylex();
 printf("%8d%8d%8d\n", lines, words, chars);
 return 0;
 }

 for(i = 1; i < argc; i++) {
 FILE *f = fopen(argv[i], "r");

 if(!f) {
 perror(argv[i]);
 return (1);
 }
 yyrestart(f);
 yylex();
 fclose(f);
 printf("%8d%8d%8d %s\n", lines, words, chars, argv[i]);
 totchars += chars; chars = 0;
 totwords += words; words = 0;
 totlines += lines; lines = 0;
 }
 if(argc > 1) /* print total if more than one file */
 printf("%8d%8d%8d total\n", totlines, totwords, totchars);
 return 0;
}

For each file, it opens the file, uses yyrestart() to make it the input to the scanner, and
calls yylex() to scan it. Like the real wc, it also tracks the overall total items read and
reports the overall totals if there was more than one input file.

The I/O Structure of a Flex Scanner
Basically, a flex scanner reads from an input source and optionally writes to an output
sink. By default, the input and output are stdin and stdout, but as we’ve seen, they’re
often changed to something else.

The I/O Structure of a Flex Scanner | 25

Download at Boykma.Com

Input to a Flex Scanner
In programs that include scanners, the performance of the scanner frequently deter-
mines the performance of the entire program. Early versions of lex read from yyin one
character at a time. Since then, flex has developed a flexible (perhaps overly so) three-
level input system that allows programmers to customize it at each level to handle any
imaginable input structure.

In most cases, a flex scanner reads its input using stdio from a file or the standard input,
which can be the user console. There’s a subtle but important difference between read-
ing from a file and reading from the console—readahead. If the scanner is reading from
a file, it should read big chunks to be as fast as possible. But if it’s reading from the
console, the user is probably typing one line at a time and will expect the scanner to
process each line as soon as it’s typed. In this case, speed doesn’t matter, since a very
slow scanner is still a lot faster than a fast typist, so it reads one character at a time.
Fortunately, a flex scanner checks to see whether its input is from the terminal and
generally does the right thing automatically.†

To handle its input, a flex scanner uses a structure known as a YY_BUFFER_STATE, which
describes a single input source. It contains a string buffer and a bunch of variables and
flags. Usually it contains a FILE* for the file it’s reading from, but it’s also possible to
create a YY_BUFFER_STATE not connected a file to scan a string already in memory.

The default input behavior of a flex scanner is approximately this:

 YY_BUFFER_STATE bp;
 extern FILE* yyin;

 ... whatever the program does before the first call to the scanner

 if(!yyin) yyin = stdin; default input is stdin
 bp = yy_create_buffer(yyin,YY_BUF_SIZE);
 YY_BUF_SIZE defined by flex, typically 16K
 yy_switch_to_buffer(bp); tell it to use the buffer we just made

 yylex(); or yyparse() or whatever calls the scanner

If yyin isn’t already set, set it to stdin. Then use yy_create_buffer to create a new buffer
reading from yyin, use yy_switch_to_buffer to tell the scanner to read from it, then scan.

When reading from several files in sequence, after opening each file, call
yyrestart(fp) to switch the scanner input to the stdio file fp. For the common case
where a new file is assigned to yyin, YY_NEW_FILE is equivalent to yyrestart(yyin).‡

† There’s a separate issue for interactive scanners related to whether the scanning process itself needs to peek
ahead at the character after the one being processed, but we’ll save that for later in this chapter. Fortunately,
flex generally does the right thing in that case, too.

‡ If the previous yyin was read all the way to EOF, YY_NEW_FILE isn’t strictly necessary, but it’s good to use
anyway for defensive programming. This is particularly the case if a scanner or parse error might return from
the scanner or parser without reading the whole file.

26 | Chapter 2: Using Flex

Download at Boykma.Com

There are several other functions to create scanner buffers, including
yy_scan_string("string") to scan a null-terminated string and yy_scan_buffer(char
*base, size) to scan a buffer of known size. Later in this chapter we’ll also see functions
to maintain a stack of buffers, which is handy when handling nested include files.
They’re all listed in Chapter 5, under “Input Management.”

Finally, for maximum flexibility, you can redefine the macro that flex uses to read input
into the current buffer:

#define YY_INPUT(buf,result,max_size) ...

Whenever the scanner’s input buffer is empty, it invokes YY_INPUT, where buf and
maxsize are the buffer and its size, respectively, and result is where to put the actual
amount read or zero at EOF. (Since this is a macro, it’s result, not *result.) The ability
to redefine YY_INPUT predates the addition of YY_BUFFER_STATE, so most of what people
used to do with the former is now better done with the latter. At this point, the main
use for a custom YY_INPUT is in event-driven systems where the input arrives from
something that can’t be preloaded into a string buffer and that stdio can’t handle.

Whenever the scanner reaches the end of an input file, it matches the pseudopattern
<<EOF>>, which is often used to clean up, switch to other files, and so forth.

Flex offers two macros that can be useful in action code, input() and unput(). Each call
to input() returns the next character from the input stream. It’s sometimes a convenient
way to read through a little input without having to write patterns to match it. Each
call to unput(c) pushes character c back into the input stream. It’s an alternative to
the / operator to peek ahead into the input but not to process it.

To summarize, the three levels of input management are:

• Setting yyin to read the desired file(s)

• Creating and using YY_BUFFER_STATE input buffers

• Redefining YY_INPUT

Flex Scanner Output
Scanner output management is much simpler than input management and is com-
pletely optional. Again, harking back to the earliest versions of lex, unless you tell it
otherwise, flex acts as though there is a default rule at the end of the scanner that copies
otherwise unmatched input to yyout.

. ECHO;

#define ECHO fwrite(yytext, yyleng, 1, yyout)

This is of some use in flex programs that do something with part of the input and leave
the rest untouched, as in the English to American translator in Example 1-2, but in
general it is more likely to be a source of bugs than to be useful. Flex lets you say
%option nodefault at the top of the scanner to tell it not to add a default rule and rather

The I/O Structure of a Flex Scanner | 27

Download at Boykma.Com

to report an error if the input rules don’t cover all possible input. I recommend that
scanners always use nodefault and include their own default rule if one is needed.

Start States and Nested Input Files
We’ll try out our knowledge of flex I/O with a simple program that handles nested
include files and prints them out. To make it a little more interesting, it prints the input
files with the line number of each line in its file. To do that, the program keeps a stack
of nested input files and line numbers, pushing an entry each time it encounters a
#include and popping an entry off the stack when it gets to the end of a file.

We also use a very powerful flex feature called start states that let us control which
patterns can be matched when. The %x line near the top of the file defines IFILE as a
start state that we’ll use when we’re looking for the filename in a #include statement.
At any point, the scanner is in one start state and can match patterns active in that start
state only. In effect, the state defines a different scanner, with its own rules.

You can define as many start states as needed, but in this program we need only one
in addition to the INITIAL state that flex always defines. Patterns are tagged with start
state names in angle brackets to indicate in which state(s) the pattern is active. The
%x marks IFILE as an exclusive start state, which means that when that state is active,
only patterns specifically marked with the state can match. (There are also inclusive
start states declared with %s, in which patterns not marked with any state can also
match. Exclusive states are usually more useful.) In action code, the macro BEGIN
switches to a different start state. Example 2-3 shows a code skeleton for a scanner that
handles included files.

Example 2-3. Skeleton for include files

/* fb2-3 skeleton for include files */
%option noyywrap
%x IFILE

%{
 struct bufstack {
 struct bufstack *prev; /* previous entry */
 YY_BUFFER_STATE bs; /* saved buffer */
 int lineno; /* saved line number */
 char *filename; /* name of this file */
 FILE *f; /* current file */
 } *curbs = 0;

 char *curfilename; /* name of current input file */

 int newfile(char *fn);
 int popfile(void);
%}
%%
 match #include statement up through the quote or <
^"#"[\t]*include[\t]*\[\"<] { BEGIN IFILE; }

28 | Chapter 2: Using Flex

Download at Boykma.Com

 handle filename up to the closing quote, >, or end of line
<IFILE>[^ \t\n\">]+ {
 { int c;
 while((c = input()) && c != '\n') ;
 }
 yylineno++;
 if(!newfile(yytext))
 yyterminate(); /* no such file */
 BEGIN INITIAL;
 }

 handle bad input in IFILE state
<IFILE>.|\n { fprintf(stderr, "%4d bad include line\n", yylineno);
 yyterminate();
 }

 pop the file stack at end of file, terminate if it's the outermost file
<<EOF>> { if(!popfile()) yyterminate(); }

 print the line number at the beginning of each line
 and bump the line number each time a \n is read
^. { fprintf(yyout, "%4d %s", yylineno, yytext); }
^\n { fprintf(yyout, "%4d %s", yylineno++, yytext); }
\n { ECHO; yylineno++; }
. { ECHO; }

%%

main(int argc, char **argv)
{
 if(argc < 2) {
 fprintf(stderr, "need filename\n");
 return 1;
 }
 if(newfile(argv[1]))
 yylex();
}

int
 newfile(char *fn)
{
 FILE *f = fopen(fn, "r");
 struct bufstack *bs = malloc(sizeof(struct bufstack));

 /* die if no file or no room */
 if(!f) { perror(fn); return 0; }
 if(!bs) { perror("malloc"); exit(1); }

 /* remember state */
 if(curbs)curbs->lineno = yylineno;
 bs->prev = curbs;

 /* set up current entry */
 bs->bs = yy_create_buffer(f, YY_BUF_SIZE);

Start States and Nested Input Files | 29

Download at Boykma.Com

 bs->f = f;
 bs->filename = fn;
 yy_switch_to_buffer(bs->bs);
 curbs = bs;
 yylineno = 1;
 curfilename = fn;
 return 1;
}

int
 popfile(void)
{
 struct bufstack *bs = curbs;
 struct bufstack *prevbs;

 if(!bs) return 0;

 /* get rid of current entry
 fclose(bs->f);
 yy_delete_buffer(bs->bs);

 /* switch back to previous */
 prevbs = bs->prev;
 free(bs);

 if(!prevbs) return 0;

 yy_switch_to_buffer(prevbs->bs);
 curbs = prevbs;
 yylineno = curbs->lineno;
 curfilename = curbs->filename;
 return 1;
}

The first part of the program defines the start state and also has the C code to declare
the bufstack structure that will hold an entry in the list of saved input files.

In the patterns, the first pattern matches a #include statement up through the double
quote that precedes the filename. The pattern permits optional whitespace in the usual
places. It switches to IFILE state to read the next input filename. In IFILE state, the
second pattern matches a filename, characters up to a closing quote, whitespace, or
end-of-line. The filename is passed to newfile to stack the current input file and set up
the next level of input, but first there’s the matter of dealing with whatever remains of
the #include line. One possibility would be to use another start state and patterns that
absorb the rest of the line, but that would be tricky, since the action switches to the
included file, so the start state and pattern would have to be used after the end of the
included file. Instead, this is one of the few places where input() makes a scanner
simpler. A short loop reads until it finds the \n at the end of the line or EOF. Then,
when scanning returns to this file after the end of the included one, it resumes at the
beginning of the next line.

30 | Chapter 2: Using Flex

Download at Boykma.Com

Since an exclusive start state in effect defines its own mini-scanner, that scanner has to
be prepared for any possible input. The next pattern deals with the case of an ill-formed
#include line that doesn’t have a filename after the double quote. It simply prints an
error message and uses the macro yyterminate(), which immediately returns from the
scanner.§ This definition of #include is fairly casual and makes no effort to verify that
the punctuation around the filename matches or that there isn’t extra junk after the
filename. It’s not hard to write code to check those issues and diagnose errors, and a
more polished version of this program should do so.‖

Next is the special pattern <<EOF>>, which matches at the end of each input file. We
call popfile(), defined later, to return to the previous input file. If it returns 0, meaning
that was the last file, we terminate. Otherwise, the scanner will resume reading the
previous file when it resumes scanning.

The last four patterns do the actual work of printing out each line with a preceding line
number. Flex provides a variable called yylineno that is intended to track line numbers,
so we might as well use it. The pattern ^. matches any character at the beginning of a
line, so the action prints the current line number and the character. Since a dot doesn’t
match a newline, ^\n matches a newline at the beginning of a line, that is, an empty
line, so the code prints out the line number and the new line and increments the line
number. A newline or other character not at the beginning of the line is just printed
out with ECHO, incrementing the line number for a new line.

The routine newfile(fn) prepares to read from the file named fn, saving any previous
input file. It does so by keeping a linked list of bufstack structures, each of which has
a link to the previous bufstack along with the saved yylineno and filename. It opens
the file; creates and switches to a flex buffer; and saves the previous open file, filename,
and buffer. (In this program nothing uses the filename after the file is open, but we’ll
reuse this code later in this chapter in a program that does.)

The routine popfile undoes what newfile did. It closes the open file, deletes the current
flex buffer, and then restores the buffer, filename, and line number from the prior stack
entry. Note that it doesn’t call yyrestart() when it restores the prior buffer; if it did, it
would lose any input that had already been read into the buffer.

This is a fairly typical albeit somewhat simplistic example of code for handling
include files. Although flex can handle a stack of input buffers using the routines
yypush_buffer_state and yypop_buffer_state, I rarely find them to be useful since they
don’t handle the other information invariably associated with the stacked files.

§ It returns the value YY_NULL, defined as 0, which a bison parser interprets as the end of input.

‖ Or to put it another way, the error diagnostics are left as an exercise for the reader.

Start States and Nested Input Files | 31

Download at Boykma.Com

Symbol Tables and a Concordance Generator
Nearly every flex or bison program uses a symbol table to keep track of the names used
in the input. We’ll start with a very simple program that makes a concordance, which
is a list of the line numbers where each word in the input appears, and then we’ll modify
it to read C source to make a C cross-referencer.

Managing Symbol Tables
Many long and dense chapters have been written in compiler texts on the topic of
symbol tables, but this (I hope) is not one of them. The symbol table for the concordance
simply tracks each word and the files and line numbers of each. Example 2-4 shows
the declarations part of the concordance generator.

Example 2-4. Concordance generator

/* fb2-4 text concordance */
%option noyywrap nodefault yylineno case-insensitive

/* the symbol table */
%{
 struct symbol { /* a word */
 char *name;
 struct ref *reflist;
 };

 struct ref {
 struct ref *next;
 char *filename;
 int flags;
 int lineno;
 };

 /* simple symtab of fixed size */
 #define NHASH 9997
 struct symbol symtab[NHASH];

 struct symbol *lookup(char*);
 void addref(int, char*, char*,int);

 char *curfilename; /* name of current input file */

%}
%%

The %option line has two options we haven’t seen before, both of which are quite useful.
The %yylineno option tells flex to define an integer variable called yylineno and to
maintain the current line number in it. What that means is that every time the scanner
reads a newline character, it increments yylineno, and if the scanner backs up over a
newline (using some features we’ll get to later), it decrements it. It’s still up to you to
initialize yylineno to 1 at the beginning of each file and to save and restore it if you’re

32 | Chapter 2: Using Flex

Download at Boykma.Com

handling include files. Even with those limitations, it’s still easier than doing line num-
bers by hand. (In this example, there’s only a single pattern that matches \n, which
wouldn’t be hard to get right, but it’s quite common to have several patterns that match,
causing hard-to-track bugs when some but not all of them update the line number.)

The other new option is case-insensitive, which tells flex to build a scanner that treats
upper- and lowercase the same. What this means is that a pattern like abc will match
abc, Abc, ABc, AbC, and so forth. It does not have any effect on your input; in particular,
the matched string in yytext is not case folded or otherwise modified.

The symbol table is just an array of symbol structures, each of which contains a pointer
to the name (i.e., the word in the concordance) and a list of references. The references
are a linked list of line numbers and pointers to the filename. We also define
curfilename, a static pointer to the name of the current file, for use when adding ref-
erences.

%%
 /* rules for concordance generator */
 /* skip common words */
a |
an |
and |
are |
as |
at |
be |
but |
for |
in |
is |
it |
of |
on |
or |
that |
the |
this |
to /* ignore */

[a-z]+(\'(s|t))? { addref(yylineno, curfilename, yytext, 0); }
.|\n /* ignore everything else */
%%

Concordances usually don’t index common short words, so the first set of patterns
matches and ignores them. An action consisting solely of a vertical bar tells flex that
the action for this rule is the same as the action for the next rule. The action on the last
ignored word to does nothing, which is all we need to do to ignore a word.

The next rule is the meat of the scanner and matches a reasonable approximation of
an English word. It matches a string of letters, [a-z]+, optionally followed by an apos-
trophe and either s or t, to match words such as owner’s and can’t. Each matched word

Symbol Tables and a Concordance Generator | 33

Download at Boykma.Com

is passed to addref(), described in a moment, along with the current filename and line
number.

The final pattern is a catchall to match whatever the previous patterns didn’t.

Note that this scanner is extremely ambiguous, but flex’s rules for resolving ambiguity
make it do what we want. It prefers longer matches to shorter ones, so the word toad
will be matched by the main word pattern, not to. If two patterns make an exact match,
it prefers the earlier one in the program, which is why we put the ignore rules first and
the catchall last.

/* concordance main routine */
main(argc, argv)
int argc;
char **argv;
{
 int i;

 if(argc < 2) { /* just read stdin */
 curfilename = "(stdin)";
 yylineno = 1;
 yylex();
 } else
 for(i = 1; i < argc; i++) {
 FILE *f = fopen(argv[i], "r");

 if(!f) {
 perror(argv[1]);
 return (1);
 }
 curfilename = argv[i]; /* for addref */

 yyrestart(f);
 yylineno = 1;
 yylex();
 fclose(f);
 }

 printrefs();
}

The main routine looks a lot like the one in the word count program that reads multiple
files. It opens each file in turn, uses yyrestart to arrange to read the file, and calls
yylex. The additions are setting curfilename to the name of the file, for use when build-
ing the list of references, and setting yylineno to 1 for each file. (Otherwise, the line
numbers would continue from one file to another, which might be desirable in some
situations, but not here.) Finally, printrefs alphabetizes the symbol table and prints
the references.

34 | Chapter 2: Using Flex

Download at Boykma.Com

Using a Symbol Table
The code section of the scanner includes a simple symbol table routine, a routine to
add a word to the symbol table, and a routine to print out the concordance after all the
input is run.

This symbol table is minimal but quite functional. It contains one routine, lookup,
which takes a string and returns the address of the table entry for that name, creating
a new entry if there isn’t one already. The lookup technique is known as hashing with
linear probing. It uses a hash function to turn the string into an entry number in the
table, then checks the entry, and, if it’s already taken by a different symbol, scans
linearly until it finds a free entry.

The hash function is also quite simple: For each character, multiply the previous hash
by 9 and then xor the character, doing all the arithmetic as unsigned, which ignores
overflows. The lookup routine computes the symbol table entry index as the hash value
modulo the size of the symbol table, which was chosen as a number with no even
factors, again to mix the hash bits up.

/* hash a symbol */
static unsigned
symhash(char *sym)
{
 unsigned int hash = 0;
 unsigned c;

 while(c = *sym++) hash = hash*9 ^ c;

 return hash;
}

struct symbol *
lookup(char* sym)
{
 struct symbol *sp = &symtab[symhash(sym)%NHASH];
 int scount = NHASH; /* how many have we looked at */

 while(--scount >= 0) {
 if(sp->name && !strcmp(sp->name, sym)) return sp;

 if(!sp->name) { /* new entry */
 sp->name = strdup(sym);
 sp->reflist = 0;
 return sp;
 }

 if(++sp >= symtab+NHASH) sp = symtab; /* try the next entry */
 }
 fputs("symbol table overflow\n", stderr);
 abort(); /* tried them all, table is full */

}

Symbol Tables and a Concordance Generator | 35

Download at Boykma.Com

Note that whenever lookup makes a new entry, it calls strdup to make a copy of the
string to put into the symbol table entry. Flex and bison programs often have hard-to-
track string storage management bugs, because it is easy to forget that the string in
yytext will be there only until the next token is scanned.

This simple hash function and lookup routine works pretty well. I ran a group of text
files through an instrumented version of the concordance program, with 4,429 different
words and a total of 70,775 lookups. The average lookup took 1.32 probes, not far
from the ideal minimum of 1.0.

void
addref(int lineno, char *filename, char *word, int flags)
{
 struct ref *r;
 struct symbol *sp = lookup(word);

 /* don't do dups of same line and file */
 if(sp->reflist &&
 sp->reflist->lineno == lineno &&
 sp->reflist->filename == filename) return;

 r = malloc(sizeof(struct ref));
 if(!r) {fputs("out of space\n", stderr); abort(); }
 r->next = sp->reflist;
 r->filename = filename;
 r->lineno = lineno;
 r->flags = flags;
 sp->reflist = r;
}

Next is addref, the routine called from inside the scanner to add a reference to a par-
ticular word; it’s implemented as a linked list of reference structures chained from the
symbol. In order to make the report a little shorter, it doesn’t add a reference if the
symbol already has a reference to the same line number and filename. Note that in this
routine, we don’t make a copy of the filename, because we know that the caller handed
us a string that won’t change. We don’t copy the word either, since lookup will handle
that if needed. Each reference has a flags value that isn’t used here but will be when
we reuse this code in the next example.

/* print the references
 * sort the table alphabetically
 * then flip each entry's reflist to get it into forward order
 * and print it out
 */

/* aux function for sorting */
static int
symcompare(const void *xa, const void *xb)
{
 const struct symbol *a = xa;
 const struct symbol *b = xb;

 if(!a->name) {

36 | Chapter 2: Using Flex

Download at Boykma.Com

 if(!b->name) return 0; /* both empty */
 return 1; /* put empties at the end */
 }
 if(!b->name) return -1;
 return strcmp(a->name, b->name);
}

void
printrefs()
{
 struct symbol *sp;

 qsort(symtab, NHASH, sizeof(struct symbol), symcompare); /* sort the symbol table */

 for(sp = symtab; sp->name && sp < symtab+NHASH; sp++) {
 char *prevfn = NULL; /* last printed filename, to skip dups */

 /* reverse the list of references */
 struct ref *rp = sp->reflist;
 struct ref *rpp = 0; /* previous ref */
 struct ref *rpn; /* next ref */

 do {
 rpn = rp->next;
 rp->next = rpp;
 rpp = rp;
 rp = rpn;
 } while(rp);

 /* now print the word and its references */
 printf("%10s", sp->name);
 for(rp = rpp; rp; rp = rp->next) {
 if(rp->filename == prevfn) {
 printf(" %d", rp->lineno);
 } else {
 printf(" %s:%d", rp->filename, rp->lineno);
 prevfn = rp->filename;
 }
 }
 printf("\n");
 }
}

The final routines sort and print the symbol table. The symbol table is created in an
order that depends on the hash function, which is not one that is useful to human
readers, so we sort the symbol table alphabetically using the standard qsort function.
Since the symbol table probably won’t be full, the sort function puts unused symbol
entries after used ones, so the sorted entries will end up at the front of the table.

Then printrefs runs down the table and prints out the references to each word. The
references are in a linked list, but since each reference was pushed onto the front of the
list, it is in reverse order. So, we make a pass over the list to flip the links and put it in
forward order, and we then print it out.# To make the concordance somewhat more

Symbol Tables and a Concordance Generator | 37

Download at Boykma.Com

readable, we print the filename only if it’s different from the one in the previous entry.
We just compare the pointer to the filename, on the reasonable assumption that all
entries for the same file will point to the same copy of the filename.

C Language Cross-Reference
The final example in this chapter takes all the techniques we’ve learned so far and uses
them in one program, a fairly realistic C language cross-referencer (Example 2-5). It
uses nested input files to handle #include statements, start states to handle includes
and comments, a lexical hack to track when a mention of a symbol is a definition rather
than a reference, and a symbol table to keep track of it all.

Example 2-5. C cross-referencer

/* fb2-5 C cross-ref */
%option noyywrap nodefault yylineno

%x COMMENT
%x IFILE

/* some complex named patterns */
/* Universal Character Name */
UCN (\\u[0-9a-fA-F]{4}|\\U[0-9a-fA-F]{8})
/* float exponent */
EXP ([Ee][-+]?[0-9]+)
/* integer length */
ILEN ([Uu](L|l|LL|ll)?|(L|l|LL|ll)[Uu]?)

The options here are the same as for the concordance, except that there’s no case fold-
ing, since C treats upper- and lowercase text differently. The two exclusive start states
are COMMENT, used to skip text inside C comments, and IFILE, used in #include.

Next come three named patterns, for use later in the rule section. There’s a style of flex
programming that names every tiny subpattern, for example, DIGIT for [0-9]. I don’t
find that useful, but I do find it useful to name patterns that are both fairly complex
and used inside other larger patterns. The first pattern matches a universal character
name, which is a cumbersome way of putting non-ASCII characters into strings and
identifiers. A UCN is \u followed by four hex digits or else \U followed by eight hex
digits. The second pattern is for the exponent of a floating-point number, the letter E
in upper- or lowercase, an optional sign, and a string of digits. The third pattern matches
the length and type suffix on an integer constant, which is an optional U for unsigned
or an optional L or LL for length, in either order, each in either upper- or lowercase.
Each pattern is enclosed in parentheses to avoid an old lex/flex incompatibility: When

#This trick of building the list in the wrong order and then reversing it is a handy one that we’ll see again when
building parse trees. It turns out to be quite efficient, since the reversal step takes just one pass over the list
and requires no extra space in each individual entry.

38 | Chapter 2: Using Flex

Download at Boykma.Com

flex interpolates a named pattern, it acts as though the pattern was enclosed in parens,
but lex didn’t, leading to some very obscure bugs.

/* the symbol table */
%{
 struct symbol { /* a variable name */
 struct ref *reflist;
 char *name;
 };

 struct ref {
 struct ref *next;
 char *filename;
 int flags; /* 01 - definition */
 int lineno;
 };

 /* simple symtab of fixed size */
 #define NHASH 9997
 struct symbol symtab[NHASH];

 struct symbol *lookup(char*);
 void addref(int, char*, char*, int);

 char *curfilename; /* name of current input file */

/* include file stack */
 struct bufstack {
 struct bufstack *prev; /* previous entry */
 YY_BUFFER_STATE bs; /* saved buffer */
 int lineno; /* saved line number in this file */
 char *filename; /* name of this file */
 FILE *f; /* current file */
 } *curbs;

 int newfile(char *fn);
 int popfile(void);

 int defining; /* names are probably definitions */

%}

The rest of the front section should look familiar. The symbol table is the same as the
one in the previous example. The file stack is the same as in Example 2-3.

Last is a new variable, defining, which is set when a mention of a name is likely to be
a definition rather than a reference.

Next comes the rules section, which is much longer than any rules section we’ve seen
before; this one is more typical of practical flex programs. Many of the token-matching
rules are long and complicated but were actually quite easy to write by transliterating
the BNF descriptions in the C standard. Although flex can’t handle general BNF (you
need bison for that), the tokens were deliberately designed to be matched by regular
expressions, so the transliterations all work.

C Language Cross-Reference | 39

Download at Boykma.Com

%%
 /* comments */
"/*" { BEGIN(COMMENT); }
<COMMENT>"*/" { BEGIN(INITIAL); }
<COMMENT>([^*]|\n)+|.
<COMMENT><<EOF>> { printf("%s:%d: Unterminated comment\n",
 curfilename, yylineno); return 0; }

 /* C++ comment, a common extension */
"//".*\n

An exclusive start state makes it easy to match C comments. The first rule starts the
COMMENT state when it sees /*, and the second rule switches back to the normal
INITIAL state on */. The third rule matches everything in between. Although the com-
plexity of patterns doesn’t affect the speed of a flex scanner, it is definitely faster to
match one big pattern than several little ones. So, this rule could have just been .|\n,
but the ([^*]|\n)+ can match a long string of text at once. Note that it has to exclude
* so that the second rule can match */. The <COMMENT><<EOF>> rule catches and reports
unterminated comments. Next is a bonus rule that matches C++-style comments, a
common extension to C compilers.

Patterns for C Comments
Although it’s possible to match C comments with a single flex pattern, it’s generally
not a great idea to do so. For reference, here’s the pattern:

/*([^*]|*+[^/*])**+/

It matches the two characters that begin a comment, /*; then a sequence of nonstars
or strings of stars followed by something other than a star or slash, ([^*]|*+[^/*])*;
followed by at least one star and a closing slash, *+/.

There are two reasons to prefer the approach with multiple patterns and a start state.
One is that comments can potentially be very long, if one comments out a couple of
pages of code, but a flex token is limited to the size of the input buffer, typically 16K.
(This is the kind of bug that is likely to be missed in testing.) The other is that it’s much
easier to catch and diagnose unclosed comments. It’d be possible to use a modified
version of the previous pattern to match unclosed comments, but they’d be even more
likely to run afoul of the 16K limit.

 /* declaration keywords */
_Bool |
_Complex |
_Imaginary |
auto |
char |
const |
double |
enum |
extern |
float |

40 | Chapter 2: Using Flex

Download at Boykma.Com

inline |
int |
long |
register |
restrict |
short |
signed |
static |
struct |
typedef |
union |
unsigned |
void |
volatile { defining = 1; }

 /* keywords */
break
case
continue
default
do
else
for
goto
if
return
sizeof
switch
while

Next are patterns to match all of the C keywords. The keywords that introduce a def-
inition or declaration set the defining flag; the other keywords are just ignored.

Another way to handle keywords is to put them into the symbol table with a flag saying
they’re keywords, treat them as ordinary symbols in the scanner, and recognize them
via the symbol table lookup. This is basically a space versus time trade-off. Putting them
into the scanner makes the scanner bigger but recognizes the keywords without an extra
lookup. On modern computers the size of the scanner tables is rarely an issue, so it is
easier to put them in the scanner; even with all the keywords, the tables in this program
are less than 18K bytes.

 /* constants */

 /* integers */
0[0-7]*{ILEN}?
[1-9][0-9]*{ILEN}?
0[Xx][0-9a-fA-F]+{ILEN}?

 /* decimal float */
([0-9]*\.[0-9]+|[0-9]+\.){EXP}?[flFL]?
[0-9]+{EXP}[flFL]?

 /* hex float */
0[Xx]([0-9a-fA-F]*\.[0-9a-fA-F]+|[0-9a-fA-F]+\.?)[Pp][-+]?[0-9]+[flFL]?

C Language Cross-Reference | 41

Download at Boykma.Com

Next come the patterns for numbers. The syntax for C numbers is surprisingly com-
plicated, but the named ILEN and EXP subpatterns make the rules manageable. There’s
one pattern for each form of integer, octal, decimal, and hex, each with an optional
unsigned and/or integer prefix. (This could have been done as one larger pattern, but
it seems easier to read this way, and of course it’s the same speed.)

Decimal floating-point numbers are very similar to the Fortran example earlier in the
chapter. The first pattern matches a number that includes a decimal point and has an
optional exponent. The second matches a number that doesn’t have a decimal point,
in which case the exponent is mandatory to make it floating point. (Without the ex-
ponent, it’d just be an integer.)

Finally comes the hex form of a floating-point number, with a binary exponent sepa-
rated by P rather than E, so it can’t use the EXP pattern.

 /* char const */
\'([^'\\]|\\['"?\\abfnrtv]|\\[0-7]{1,3}|\\[Xx][0-9a-fA-F]+|{UCN})+\'

 /* string literal */
L?\"([^"\\]|\\['"?\\abfnrtv]|\\[0-7]{1,3}|\\[Xx][0-9a-fA-F]+|{UCN})*\"

Next come very messy patterns for character and string literals. A character literal is a
single quote followed by one or more of an ordinary character other than a quote or a
backslash, a single character backslash escape such as \n, an octal escape with up to
three octal digits, a hex escape with an arbitrary number of hex digits, or a UCN, all
followed by a close quote. A string literal is the same syntax, except that it’s enclosed
in double quotes, has an optional prefix L to indicate a wide string, and doesn’t have
to contain any characters. (Note the + at the end of the character constant and the * at
the end of the string.)

 /* punctuators */
"{"|"<%"|";" { defining = 0; }

"["|"]"|"("|")"|"{"|"}"|"."|"->"
"++"|"--"|"&"|"*"|"+"|"-"|"~"|"!"
"/"|"%"|"<<"|">>"|"<"|">"|"<="|">="|"=="|"!="|"^"|"|"|"&&"|"||"
"?"|":"|";"|"..."
"="|"*="|"/="|"%="|"+="|"-="|"<<="|">>="|"&="|"^=""|="
","|"#"|"##"
"<:"|":>"|"%>"|"%:"|"%:%:"

C calls all of the operators and punctuation punctuators. For our purposes, we sepa-
rately treat three that usually indicate the end of the names in a variable or function
definition, and we ignore the rest.

 /* identifier */
([_a-zA-Z]|{UCN})([_a-zA-Z0-9]|{UCN})* {
 addref(yylineno, curfilename, yytext, defining); }

 /* whitespace */
[\t\n]+

42 | Chapter 2: Using Flex

Download at Boykma.Com

 /* continued line */
\\$

The C syntax of an identifier is a letter, underscore, or UCN, optionally followed by
more letters, underscores, UCNs, and digits. When we see an identifier, we add a ref-
erence to it to the symbol table.

Two more patterns match and ignore whitespace and a backslash at the end of the line.

 /* some preprocessor stuff */
"#"" "*if.*\n
"#"" "*else.*\n
"#"" "*endif.*\n
"#"" "*define.*\n
"#"" "*line.*\n

 /* recognize an include */
^"#"[\t]*include[\t]*[\"<] { BEGIN IFILE; }
<IFILE>[^>\"]+ {
 { int c;
 while((c = input()) && c != '\n') ;
 }
 newfile(strdup(yytext));
 BEGIN INITIAL;
 }

<IFILE>.|\n { fprintf(stderr, "%s:%d bad include line\n",
 curfilename, yylineno);
 BEGIN INITIAL;
 }

<<EOF>> { if(!popfile()) yyterminate(); }

There’s no totally satisfactory solution to handling preprocessor commands in a cross-
referencer. One possibility would be to run the source program through the prepro-
cessor first, but that would mean the cross-reference wouldn’t see any of the symbols
handled by the preprocessor, just the code it expanded to. We take a very simple ap-
proach here and just ignore all preprocessor commands other than #include. (A rea-
sonable alternative would be to read whatever follows #define and #if and add that to
the cross-reference.) The code to handle include files is nearly the same as the example
earlier in this chapter, slightly modified to handle C’s include syntax. One pattern
matches #include up to the quote or < that precedes the filename, and then it switches
to IFILE state. The next pattern collects the file name, skips the rest of the line, and
switches to the new file. It’s a little sloppy and doesn’t try to ensure that the punctuation
before and after the filename matches. The next two patterns complain if there’s no
filename and return to the previous file at the end of each included one.

 /* invalid character */
. { printf("%s:%d: Mystery character '%s'\n",
 curfilename, yylineno, yytext);
 }
%%

C Language Cross-Reference | 43

Download at Boykma.Com

The final pattern is a simple . to catch anything that none of the previous patterns did.
Since the patterns cover every token that can appear in a valid C program, this pattern
shouldn’t ever match.

The contents of the code section are very similar to code we’ve already seen. The first
two routines, symhash and lookup, are identical to the versions in the previous example
and aren’t shown again here. The version of addref is the same as in the earlier include
example. This version of printrefs is slightly different. It has a line to print a * for each
reference that’s flagged as being a definition.

void
printrefs()
{
 struct symbol *sp;

 qsort(symtab, NHASH, sizeof(struct symbol), symcompare); /* sort the symbol table */

 for(sp = symtab; sp->name && sp < symtab+NHASH; sp++) {
 char *prevfn = NULL; /* last printed filename, to skip dups */

 /* reverse the list of references */
 struct ref *rp = sp->reflist;
 struct ref *rpp = 0; /* previous ref */
 struct ref *rpn; /* next ref */

 do {
 rpn = rp->next;
 rp->next = rpp;
 rpp = rp;
 rp = rpn;
 } while(rp);

 /* now print the word and its references */
 printf("%10s", sp->name);
 for(rp = rpp; rp; rp = rp->next) {
 if(rp->filename == prevfn) {
 printf(" %d", rp->lineno);
 } else {
 printf(" %s:%d", rp->filename, rp->lineno);
 prevfn = rp->filename;
 }
 if(rp->flags & 01) printf("*");
 }
 printf("\n");
 }
}

The versions of newfile and popfile are the same as the ones earlier in this chapter, so
they aren’t repeated here. In this program, if newfile can’t open a file, it just prints an
error message, returning 1 if it opened the file and 0 if it didn’t, and the include code
in the rules section just goes on to the next line. This wouldn’t be a good idea in a
regular compiler. For a cross-referencer, it has the reasonable effect of processing

44 | Chapter 2: Using Flex

Download at Boykma.Com

include files in the same directory that are specific to the current program, while skip-
ping library files in other directories.

Finally, the main program just calls newfile and, if it succeeds, yylex for each file.

int
main(argc, argv)
int argc;
char **argv;
{
 int i;

 if(argc < 2) {
 fprintf(stderr, "need filename\n");
 return 1;
 }
 for(i = 1; i < argc; i++) {
 if(newfile(argv[i]))
 yylex();
 }

 printrefs();
 return 0;
}

This concludes our first realistically large flex program. It has a fairly complex set of
patterns, has somewhat complex file I/O, and does something with the text it reads.

Exercises
1. Example 2-3 matches characters one at a time. Why doesn’t it match them a line

at a time with a pattern like ^.*\n? Suggest a pattern or combination of patterns
that would match larger chunks of text, keeping in mind the reason ̂ .* won’t work.

2. The concordance program treats upper- and lowercase text separately. Modify it
to handle them together. You can do this without making extra copies of the words.
In symhash(), use tolower to hash lowercase versions of the characters, and use
strcasecmp() to compare words.

3. The symbol table routine in the concordance and cross-referencer programs uses
a fixed-size symbol table and dies if it fills up. Modify the routine so it doesn’t do
that. The two standard techniques to allow variable-sized hash tables are chain-
ing and rehashing. Chaining turns the hash table into a table of pointers to a list of
symbol entries. Lookups run down the chain to find the symbol, and if it’s not
found, allocate a new entry with malloc() and add it to the chain. Rehashing creates
an initial fixed-size symbol table, again using malloc(). When the symbol table fills
up, create a new larger symbol table and copy all the entries into it, using the
hash function to decide where each entry goes in the new table. Both techniques
work, but one would make it a lot messier to produce the cross-reference. Which
one? Why?

Exercises | 45

Download at Boykma.Com

Download at Boykma.Com

CHAPTER 3

Using Bison

The previous chapter concentrated on flex alone. In this chapter we turn our attention
to bison, although we use flex to generate our lexical analyzers. Where flex recognizes
regular expressions, bison recognizes entire grammars. Flex divides the input stream
into pieces (tokens), and then bison takes these pieces and groups them together logi-
cally. In this chapter we’ll finish the desk calculator we started in Chapter 1, starting
with simple arithmetic and then adding built-in functions, user variables, and finally
user-defined functions.

How a Bison Parser Matches Its Input
Bison takes a grammar that you specify and writes a parser that recognizes valid “sen-
tences” in that grammar. We use the term sentence here in a fairly general way—for a
C language grammar, the sentences are syntactically valid C programs. Programs can
be syntactically valid but semantically invalid, for example, a C program that assigns a
string to an int variable. Bison handles only the syntax; other validation is up to you.
As we saw in Chapter 1, a grammar is a series of rules that the parser uses to recognize
syntactically valid input. For example, here is a version of the grammar we’ll use later
in this chapter in a calculator:

statement: NAME '=' expression

expression: NUMBER '+' NUMBER
 | NUMBER '−' NUMBER

The vertical bar, |, means there are two possibilities for the same symbol; that is, an
expression can be either an addition or a subtraction. The symbol to the left of the : is
known as the left-hand side of the rule, often abbreviated LHS, and the symbols to the
right are the right-hand side, usually abbreviated RHS. Several rules may have the same
left-hand side; the vertical bar is just shorthand for this. Symbols that actually appear
in the input and are returned by the lexer are terminal symbols or tokens, while those
that appear on the left-hand side of each rule are nonterminal symbols or nonterminals.

47

Download at Boykma.Com

Terminal and nonterminal symbols must be different; it is an error to write a rule with
a token on the left side.

The usual way to represent a parsed sentence is as a tree. For example, if we parsed the
input fred = 12 + 13 with this grammar, the tree would look like Figure 3-1.

Figure 3-1. Expression parse tree

In this example, 12 + 13 is an expression, and fred = expression is a statement. A bison
parser doesn’t automatically create this tree as a data structure, although as we will see,
it is not hard to do so yourself. Every grammar includes a start symbol, the one that
has to be at the root of the parse tree. In this grammar, statement is the start symbol.
Rules can refer directly or indirectly to themselves; this important ability makes it pos-
sible to parse arbitrarily long input sequences. Let’s extend our grammar to handle
longer arithmetic expressions:

expression: NUMBER
 | expression + NUMBER
 | expression − NUMBER

Now we can parse a sequence like fred = 14 + 23 − 11 + 7 by applying the expression
rules repeatedly, as in Figure 3-2. Bison can parse recursive rules very efficiently, so we
will see recursive rules in nearly every grammar we use.

Shift/Reduce Parsing
A bison parser works by looking for rules that might match the tokens seen so far.
When bison processes a parser, it creates a set of states, each of which reflects a possible
position in one or more partially parsed rules. As the parser reads tokens, each time it
reads a token that doesn’t complete a rule, it pushes the token on an internal stack and

48 | Chapter 3: Using Bison

Download at Boykma.Com

switches to a new state reflecting the token it just read. This action is called a shift.
When it has found all the symbols that constitute the right-hand side of a rule, it pops
the right-hand side symbols off the stack, pushes the left-hand side symbol onto the
stack, and switches to a new state reflecting the new symbol on the stack. This action
is called a reduction, since it usually reduces the number of items on the stack.* When-
ever bison reduces a rule, it executes user code associated with the rule. This is how
you actually do something with the material that the parser parses. Let’s look how it
parses the input fred = 12 + 13 using the simple rules in Figure 3-1. The parser starts
by shifting tokens on to the internal stack one at a time:

Figure 3-2. Parse tree with recursive rules

* It is possible to have rules with empty right-hand sides, in which case a reduction ends up with one more
item than it started with, but we call them reductions anyway.

Shift/Reduce Parsing | 49

Download at Boykma.Com

 fred
 fred =
 fred = 12
 fred = 12 +
 fred = 12 + 13

At this point it can reduce the rule expression: NUMBER + NUMBER, so it pops the 12, the
plus, and the 13 from the stack and replaces them with expression:

 fred = expression

Now it reduces the rule statement: NAME = expression, so it pops fred, =, and
expression and replaces them with statement. We’ve reached the end of the input and
the stack has been reduced to the start symbol, so the input was valid according to the
grammar.

What Bison’s LALR(1) Parser Cannot Parse
Bison parsers can use either of two parsing methods, known as LALR(1) (Look Ahead
Left to Right with a one-token lookahead) and GLR (Generalized Left to Right). Most
parsers use LALR(1), which is less powerful but considerably faster and easier to use
than GLR. In this chapter we’ll describe LALR parsing and save GLR for Chapter 9.

Although LALR parsing is quite powerful, you can write grammars that it cannot han-
dle. It cannot deal with ambiguous grammars, ones in which the same input can match
more than one parse tree. It also cannot deal with grammars that need more than one
token of lookahead to tell whether it has matched a rule. (But bison has a wonderful
hack to deal with the most common kind of ambiguous grammars, which we’ll come
to in a few pages.) Consider this extremely contrived example:

phrase: cart_animal AND CART
 | work_animal AND PLOW

cart_animal: HORSE | GOAT

work_animal: HORSE | OX

This grammar isn’t ambiguous, since there is only one possible parse tree for any valid
input, but bison can’t handle it because it requires two symbols of lookahead. In par-
ticular, in the input HORSE AND CART it cannot tell whether HORSE is a cart_animal, or a
work_animal until it sees CART, and bison cannot look that far ahead. If we changed the
first rule to this:

phrase: cart_animal CART
 | work_animal PLOW

bison would have no trouble, since it can look one token ahead to see whether an input
of HORSE is followed by CART, in which case the horse is a cart_animal, or by PLOW, in
which case it is a work_animal. In practice, the rules about what bison can handle are
not as complex and confusing as they may seem here. One reason is that bison knows
exactly what grammars it can parse and what it cannot. If you give it one that it cannot

50 | Chapter 3: Using Bison

Download at Boykma.Com

handle, it will tell you, so there is no problem of overcomplex parsers silently failing.
Another reason is that the grammars that bison can handle correspond pretty well to
ones that people really write. As often as not, a grammatical construct that confuses
bison will confuse people as well, so if you have some latitude in your language design,
you should consider changing the language to make it more understandable both to
bison and to its users. For more information on shift/reduce parsing, see Chapter 7.
For a discussion of what bison has to do to turn your specification into a working C
program, a good reference is Dick Grune’s Parsing Techniques: A Practical Guide. He
offers a download of an old but quite adequate edition at http://www.cs.vu.nl/~dick/
PTAPG.html.

A Bison Parser
A bison specification has the same three-part structure as a flex specification. (Flex
copied its structure from the earlier lex, which copied its structure from yacc, the pred-
ecessor of bison.) The first section, the definition section, handles control information
for the parser and generally sets up the execution environment in which the parser will
operate. The second section contains the rules for the parser, and the third section is
C code copied verbatim into the generated C program.

Bison creates the C program by plugging pieces into a standard skeleton file. The rules
are compiled into arrays that represent the state machine that matches the input tokens.
The actions have the $N and @N values translated into C and then are put into a switch
statement within yyparse() that runs the appropriate action each time there’s a reduc-
tion. Some bits of the skeleton have multiple versions from which bison chooses de-
pending on what options are in use; for example, if the parser uses the locations feature,
it includes code to handle location data.

In this chapter we take the simple calculator example from Chapter 1 and extend it
significantly. First, we rewrite it to take advantage of some handy bison shortcuts and
change it to produce a reusable data structure rather than computing the values on the
fly. Later, we’ll add more complex syntax for loops and functions and show how to
implement them in a simple interpreter.†

Abstract Syntax Trees
One of the most powerful data structures used in compilers is an abstract syntax tree
(AST). In Chapter 1 we saw a parse tree, a tree that has a node for every rule used to
parse the input string. In most real grammars, there are rules that exist to manage
grouping but that add no meaning to the program. In the calculator example, the rules

† Then we’ll stop; the world has plenty of script interpreter programs already. For practical purposes, you’ll
be much better off adding a few extensions to an existing well-debugged scripting language such as Python,
Perl, or Lua rather than writing yet another one.

Abstract Syntax Trees | 51

Download at Boykma.Com

http://www.cs.vu.nl/~dick/PTAPG.html
http://www.cs.vu.nl/~dick/PTAPG.html

exp: term and term: factor exist only to tell the parser the relative precedence of the
operators. An AST is basically a parse tree that omits the nodes for the uninteresting
rules.

Once a parser creates an AST, it’s straightforward to write recursive routines that
“walk” the tree. We’ll see several tree walkers in this example.

An Improved Calculator That Creates ASTs
This example is big enough to be worth dividing into several source files, so we’ll put
most of the C code into a separate file, which means we also need a C header file to
declare the routines and data structures used in the various files (Example 3-1).

Example 3-1. Calculator that builds an AST: header fb3-1.h

/*
 * Declarations for a calculator fb3-1
 */

/* interface to the lexer */
extern int yylineno; /* from lexer */
void yyerror(char *s, ...);

/* nodes in the abstract syntax tree */
struct ast {
 int nodetype;
 struct ast *l;
 struct ast *r;
};

struct numval {
 int nodetype; /* type K for constant */
 double number;
};

/* build an AST */
struct ast *newast(int nodetype, struct ast *l, struct ast *r);
struct ast *newnum(double d);

/* evaluate an AST */
double eval(struct ast *);

/* delete and free an AST */
void treefree(struct ast *);

The variable yylineno and routine yyerror are familiar from the flex example. Our
yyerror is slightly enhanced to take multiple arguments in the style of printf.

The AST consists of nodes, each of which has a node type. Different nodes have different
fields, but for now we have just two kinds, one that has pointers to up to two subnodes
and one that contains a number. Two routines, newast and newnum, create AST nodes;

52 | Chapter 3: Using Bison

Download at Boykma.Com

eval walks an AST and returns the value of the expression it represents; and treefree
walks an AST and deletes all of its nodes.

Example 3-2. Bison parser for AST calculator

/* calculator with AST */

%{
include <stdio.h>
include <stdlib.h>
include "fb3-1.h"
%}

%union {
 struct ast *a;
 double d;
}

/* declare tokens */
%token <d> NUMBER
%token EOL

%type <a> exp factor term

Example 3-2 shows the bison parser for the AST calculator. The first section of the
parser uses the %union construct to declare types to be used in the values of symbols in
the parser. In a bison parser, every symbol, both tokens and nonterminals, can have a
value associated with it. By default, the values are all integers, but useful programs
generally need more sophisticated values. The %union construct, as its name suggests,
is used to create a C language union declaration for symbol values. In this case, the
union has two members; a, which is a pointer to an AST, and d, which is a double
precision number.

Once the union is defined, we need to tell bison what symbols have what types of values
by putting the appropriate name from the union in angle brackets (< >). The token
NUMBER, which represents numbers in the input, has the value <d> to hold the value of
the number. The new declaration %type assigns the value <a> to exp, factor, and term,
which we’ll use as we build up our AST.

You don’t have to declare a type for a token or declare a nonterminal at all if you don’t
use the symbol’s value. If there is a %union in the declarations, bison will give you an
error if you attempt to use the value of a symbol that doesn’t have an assigned type.
Keep in mind that any rule without explicit action code gets the default action $$ =
$1;, and bison will complain if the LHS symbol has a type and the RHS symbol doesn’t
have the same type.

%%
calclist: /* nothing */
| calclist exp EOL {
 printf("= %4.4g\n", eval($2)); evaluate and print the AST
 treefree($2); free up the AST

An Improved Calculator That Creates ASTs | 53

Download at Boykma.Com

 printf("> ");
 }

 | calclist EOL { printf("> "); } /* blank line or a comment */
 ;

exp: factor
 | exp '+' factor { $$ = newast('+', $1,$3); }
 | exp '-' factor { $$ = newast('-', $1,$3);}
 ;

factor: term
 | factor '*' term { $$ = newast('*', $1,$3); }
 | factor '/' term { $$ = newast('/', $1,$3); }
 ;

term: NUMBER { $$ = newnum($1); }
 | '|' term { $$ = newast('|', $2, NULL); }
 | '(' exp ')' { $$ = $2; }
 | '-' term { $$ = newast('M', $2, NULL); }
 ;
%%

Literal Character Tokens
The rules section has two significant changes from the version in Chapter 1. One is that
the rules now use literal tokens for the operators. Rather than giving every token a
name, it’s also possible to use a single quoted character as a token, with the ASCII value
of the token being the token number. (Bison starts the numbers for named tokens at
258, so there’s no problem of collisions.) By convention, literal character tokens are
used to represent input tokens consisting of the same character; for example, the token
'+' represents the input token +, so in practice they are used only for punctuation and
operators. There’s no need to declare literal character tokens unless you need to declare
the type of their values.

The other change to the parser is that it creates an AST for each expression rather than
evaluating it on the fly. In this version of the calculator, we create an AST for each
expression and then evaluate the AST, print the result, and free the AST. We call
newast() to create each node in the AST. Each node has an operator type, which is
generally the same as the token name. Notice that unary minus creates a node of type
M to distinguish it from binary subtraction.

Example 3-3. Lexer for AST calculator

/* recognize tokens for the calculator */
%option noyywrap nodefault yylineno
%{
include "fb3-1.h"
include "fb3-1.tab.h"
%}

54 | Chapter 3: Using Bison

Download at Boykma.Com

/* float exponent */
EXP ([Ee][-+]?[0-9]+)

%%
"+" |
"-" |
"*" |
"/" |
"|" |
"(" |
")" { return yytext[0]; }
[0-9]+"."[0-9]*{EXP}? |
"."?[0-9]+{EXP}? { yylval.d = atof(yytext); return NUMBER; }

\n { return EOL; }
"//".*
[\t] { /* ignore whitespace */ }
. { yyerror("Mystery character %c\n", *yytext); }
%%

The lexer, shown in Example 3-3, is a little simpler than the version in Chapter 1. We
use a common idiom for the single-character operators, handling them all with the same
rule that returns yytext[0], the character itself, as the token. We do still have names
for NUMBER and EOL. We also handle floating-point numbers, using a version of the pat-
tern from Chapter 2, and change the internal representation of numbers to double.
Since yylval is now a union, the double value has to be assigned to yylval.d. (Flex does
not automate the management of token values as bison does.)

Example 3-4. C routines for AST calculator

include <stdio.h>
include <stdlib.h>
include <stdarg.h>
include "fb3-1.h"

struct ast *
newast(int nodetype, struct ast *l, struct ast *r)
{
 struct ast *a = malloc(sizeof(struct ast));

 if(!a) {
 yyerror("out of space");
 exit(0);
 }
 a->nodetype = nodetype;
 a->l = l;
 a->r = r;
 return a;
}

struct ast *
newnum(double d)
{
 struct numval *a = malloc(sizeof(struct numval));

An Improved Calculator That Creates ASTs | 55

Download at Boykma.Com

 if(!a) {
 yyerror("out of space");
 exit(0);
 }
 a->nodetype = 'K';
 a->number = d;
 return (struct ast *)a;
}

Finally, there is a file of routines called from the parser, shown in Example 3-4.‡ First
come the two routines to create AST nodes, by malloc-ing a node and filling it in. All
AST nodes have a nodetype as the first field, so a tree walk can tell what kind of nodes
it’s walking through.

double
eval(struct ast *a)
{
 double v; calculated value of this subtree

 switch(a->nodetype) {
 case 'K': v = ((struct numval *)a)->number; break;

 case '+': v = eval(a->l) + eval(a->r); break;
 case '-': v = eval(a->l) - eval(a->r); break;
 case '*': v = eval(a->l) * eval(a->r); break;
 case '/': v = eval(a->l) / eval(a->r); break;
 case '|': v = eval(a->l); if(v < 0) v = -v; break;
 case 'M': v = -eval(a->l); break;
 default: printf("internal error: bad node %c\n", a->nodetype);
 }
 return v;
}

void
treefree(struct ast *a)
{
 switch(a->nodetype) {

 /* two subtrees */
 case '+':
 case '-':
 case '*':
 case '/':
 treefree(a->r);

 /* one subtree */
 case '|':
 case 'M':
 treefree(a->l);

‡ These could have gone in the third section of the parser, but it’s easier to debug your program if you don’t
put a lot of extra code in the parser file.

56 | Chapter 3: Using Bison

Download at Boykma.Com

 /* no subtree */
 case 'K':
 free(a);
 break;

 default: printf("internal error: free bad node %c\n", a->nodetype);
 }
}

Next we have the two tree-walking routines. They each make what’s known as a depth-
first traversal of the tree, recursively visiting the subtrees of each node and then the
node itself. The eval routine returns the value of the tree or subtree from each call, and
the treefree doesn’t have to return anything.

void
yyerror(char *s, ...)
{
 va_list ap;
 va_start(ap, s);

 fprintf(stderr, "%d: error: ", yylineno);
 vfprintf(stderr, s, ap);
 fprintf(stderr, "\n");
}

int
main()
{
 printf("> ");
 return yyparse();
}

Finally, we have yyerror and main. This version of yyerror uses varargs to accept a
printf-style argument list, which turns out to be convenient when generating error
messages.

Building the AST Calculator
This program now has three source files and a header file, so of course we use make to
build it.

fb3-1: fb3-1.l fb3-1.y fb3-1.h
 bison -d fb3-1.y
 flex -ofb3-1.lex.c fb3-1.l
 cc -o $@ fb3-1.tab.c fb3-1.lex.c fb3-1funcs.c

Notice the -o flag to flex. Bison automatically names its generated C file to match
the .y file, but flex always calls its C file lex.yy.c unless you tell it otherwise.

An Improved Calculator That Creates ASTs | 57

Download at Boykma.Com

Shift/Reduce Conflicts and Operator Precedence
The expression parser uses three different symbols, exp, factor, and term, to set the
precedence and associativity of operators. Although this parser is still reasonably legi-
ble, as grammars add more operators with more levels of precedence, they become
increasingly hard to read and maintain. Bison provides a clever way to describe the
precedence separately from the rules in the grammar, which makes the grammar and
parser smaller and easier to maintain. First, we’ll just make all expressions use exp
symbols:

%type <a> exp

%%
 ...
exp: exp '+' exp { $$ = newast('+', $1,$3); }
 | exp '-' exp { $$ = newast('-', $1,$3);}
 | exp '*' exp { $$ = newast('*', $1,$3); }
 | exp '/' exp { $$ = newast('/', $1,$3); }
 | '|' exp { $$ = newast('|', $2, NULL); }
 | '(' exp ')' { $$ = $2; }
 | '-' exp { $$ = newast('M', $2, NULL); }
 | NUMBER { $$ = newnum($1); }
 ;
%%

But this grammar has a problem: It is extremely ambiguous. For example, the input
2+3*4 might mean (2+3)*4 or 2+(3*4), and the input 3-4-5-6 might mean 3-(4-(5-6))
or (3-4)-(5-6) or any of a lot of other possibilities. Figure 3-3 shows the two possible
parses for 2+3*4.

Figure 3-3. Two expression parse trees

58 | Chapter 3: Using Bison

Download at Boykma.Com

If you compile this grammar as it stands, bison will tell you that there are 24 shift/reduce
conflicts, which are states where it cannot tell whether it should shift the token on the
stack or reduce a rule first. For example, when parsing 2+3*4, the parser goes through
these steps (we abbreviate exp as E here):

 2 shift NUMBER
 E reduce E → NUMBER
 E + shift +
 E + 3 shift NUMBER
 E + E reduce E → NUMBER

At this point, the parser looks at the * and could either reduce 2+3 using:

 exp: exp '+' exp

to an expression or shift the *, expecting to be able to reduce:

 exp: exp '*' exp

later on.

The problem is that we haven’t told bison about the precedence and associativity of
the operators. Precedence controls which operators execute first in an expression.
Mathematical and programming tradition (dating back past the first Fortran compiler
in 1956) says that multiplication and division take precedence over addition and sub-
traction, so a+b*c means a+(b*c), and d/e-f means (d/e)-f. In any expression grammar,
operators are grouped into levels of precedence from lowest to highest. The total num-
ber of levels depends on the language. The C language is notorious for having too many
precedence levels, a total of 15 levels.

Associativity controls the grouping of operators at the same precedence level. Operators
may group to the left, for example, a-b-c in C means (a-b)-c, or to the right, for ex-
ample, a=b=c in C means a=(b=c). In some cases, operators do not group at all; for
example, in Fortran A.LE.B.LE.C is invalid.

There are two ways to specify precedence and associativity in a grammar, implicitly
and explicitly. So far, we’ve specified them implicitly, by using separate nonterminal
symbols for each precedence level. This is a perfectly reasonable way to write a gram-
mar, and if bison didn’t have explicit precedence rules, it would be the only way.

But bison also lets you specify precedence explicitly. We can add these lines to the
definition section to tell it how to resolve the conflicts:

%left '+' '-'
%left '*' '/'
%nonassoc '|' UMINUS

%type <a> exp

%%
 ...
exp: exp '+' exp { $$ = newast('+', $1,$3); }
 | exp '-' exp { $$ = newast('-', $1,$3);}

Shift/Reduce Conflicts and Operator Precedence | 59

Download at Boykma.Com

 | exp '*' exp { $$ = newast('*', $1,$3); }
 | exp '/' exp { $$ = newast('/', $1,$3); }
 | '|' exp { $$ = newast('|', $2, NULL); }
 | '(' exp ')' { $$ = $2; }
 | '-' exp %prec UMINUS{ $$ = newast('M', NULL, $2); }
 | NUMBER { $$ = newnum($1); }
 ;

Each of these declarations defines a level of precedence, with the order of the %left,
%right, and %nonassoc declarations defining the order of precedence from lowest to
highest. They tell bison that + and - are left associative and at the lowest precedence
level; * and / are left associative and at a higher precedence level; and | and UMINUS, a
pseudotoken standing for unary minus, have no associativity and are at the highest
precedence. (We don’t have any right-associative operators here, but if we did, they’d
use %right.) Bison assigns each rule the precedence of the rightmost token on the right-
hand side; if that token has no precedence assigned, the rule has no precedence of its
own. When bison encounters a shift/reduce conflict, it consults the table of precedence,
and if all the rules involved in the conflict have a precedence assigned, it uses precedence
to resolve the conflict.

In our grammar, all of the conflicts occur in the rules of the form exp OP exp, so setting
precedence for the four operators allows it to resolve all of the conflicts. This parser
using precedence is slightly smaller and faster than the one with the extra rules for
implicit precedence, since it has fewer rules to reduce.

The rule for negation includes %prec UMINUS. The only operator in this rule is -, which
has low precedence, but we want unary minus to have higher precedence than multi-
plication rather than lower. The %prec tells bison to use the precedence of UMINUS for
this rule.

When Not to Use Precedence Rules
You can use precedence rules to fix any shift/reduce conflict that occurs in the grammar.
This is usually a terrible idea. In expression grammars, the cause of the conflicts is easy
to understand, and the effect of the precedence rules is clear. In other situations, prec-
edence rules fix shift/reduce problems, but it can be extremely difficult to understand
just what effect they have on the grammar.

Use precedence in only two situations: in expression grammars and to resolve the
“dangling else” conflict in grammars for if/then/else language constructs. (See the sec-
tion “IF/THEN/ELSE” on page 185 for examples of the latter.) Otherwise, if you can,
you should fix the grammar to remove the conflict. Remember that conflicts mean that
bison can’t create a parser for a grammar, probably because it’s ambiguous. This means
there are multiple possible parses for the same input and the parser that bison created
chose one of them. Except in the two previous cases, this usually points to a problem
in your language definition. In some cases, if a grammar is ambiguous to bison, it’s
almost certainly ambiguous to humans, too. See Chapter 8 for more information on

60 | Chapter 3: Using Bison

Download at Boykma.Com

finding and repairing conflicts, as well as the advanced bison features that let you use
ambiguous grammars if you really want to do so.

An Advanced Calculator
The final example in this chapter extends the calculator to make it a small but somewhat
realistic compiler. We’ll add named variables and assignments; comparison expres-
sions (greater, less, equal, etc.); flow control with if/then/else and while/do; built-in
and user-defined functions; and a little error recovery. The previous version of the
calculator didn’t take much advantage of the AST representation of expressions, but
in this one, the AST is the key to the implementation of flow control and user functions.
Here’s an example of defining a user function, and then calling it, using a built-in
function as one of the arguments:

> let avg(a,b) = (a+b)/2;
Defined avg
> avg(3, sqrt(25))
= 4

As before, we start with the declarations, shown in Example 3-5.

Example 3-5. Advanced calculator header fb3-2.h

/*
 * Declarations for a calculator fb3-1
 */

/* interface to the lexer */
extern int yylineno; /* from lexer */
void yyerror(char *s, ...);

/* symbol table */
struct symbol { /* a variable name */
 char *name;
 double value;
 struct ast *func; /* stmt for the function */
 struct symlist *syms; /* list of dummy args */
};

/* simple symtab of fixed size */
#define NHASH 9997
struct symbol symtab[NHASH];

struct symbol *lookup(char*);

/* list of symbols, for an argument list */
struct symlist {
 struct symbol *sym;
 struct symlist *next;
};

An Advanced Calculator | 61

Download at Boykma.Com

struct symlist *newsymlist(struct symbol *sym, struct symlist *next);
void symlistfree(struct symlist *sl);

The symbol table is adapted from the one used in the previous chapter. In the calculator,
each symbol can potentially be both a variable and a user-defined function. The
value field holds the symbol’s value as a variable, the func field points to the AST for
the user code for the function, and syms points to a linked list of the dummy arguments,
which are themselves symbols. (In the previous example, avg is the function, and a and
b are the dummy arguments.) The C functions newsymlist and symlistfree create and
free them.

/* node types
 * + - * / |
 * 0-7 comparison ops, bit coded 04 equal, 02 less, 01 greater
 * M unary minus
 * L expression or statement list
 * I IF statement
 * W WHILE statement
 * N symbol ref
 * = assignment
 * S list of symbols
 * F built in function call
 * C user function call
 */

enum bifs { /* built-in functions */
 B_sqrt = 1,
 B_exp,
 B_log,
 B_print
};

/* nodes in the abstract syntax tree */
/* all have common initial nodetype */

struct ast {
 int nodetype;
 struct ast *l;
 struct ast *r;
};

struct fncall { /* built-in function */
 int nodetype; /* type F */
 struct ast *l;
 enum bifs functype;
};

struct ufncall { /* user function */
 int nodetype; /* type C */
 struct ast *l; /* list of arguments */
 struct symbol *s;
};

struct flow {

62 | Chapter 3: Using Bison

Download at Boykma.Com

 int nodetype; /* type I or W */
 struct ast *cond; /* condition */
 struct ast *tl; /* then branch or do list */
 struct ast *el; /* optional else branch */
};

struct numval {
 int nodetype; /* type K */
 double number;
};

struct symref {
 int nodetype; /* type N */
 struct symbol *s;
};

struct symasgn {
 int nodetype; /* type = */
 struct symbol *s;
 struct ast *v; /* value */
};

/* build an AST */
struct ast *newast(int nodetype, struct ast *l, struct ast *r);
struct ast *newcmp(int cmptype, struct ast *l, struct ast *r);
struct ast *newfunc(int functype, struct ast *l);
struct ast *newcall(struct symbol *s, struct ast *l);
struct ast *newref(struct symbol *s);
struct ast *newasgn(struct symbol *s, struct ast *v);
struct ast *newnum(double d);
struct ast *newflow(int nodetype, struct ast *cond, struct ast *tl, struct ast *tr);

/* define a function */
void dodef(struct symbol *name, struct symlist *syms, struct ast *stmts);

/* evaluate an AST */
double eval(struct ast *);

/* delete and free an AST */
void treefree(struct ast *);

/* interface to the lexer */
extern int yylineno; /* from lexer */
void yyerror(char *s, ...);

This version has considerably more kinds of nodes in the AST. As before, each kind of
node starts with a nodetype that the tree-walking code can use to tell what kind of node
it is.§ The basic ast node is also used for comparisons, with each kind of comparison
(less, less-equal, equal, etc.) being a different type, and for lists of expressions.

§ This is a classic C trick that doesn’t work in C++. If you write your parser in C++, as we describe in
Chapter 9, you’ll have to use an explicit union of structures within the AST structure to get a similar result.

An Advanced Calculator | 63

Download at Boykma.Com

Built-in functions have a fncall node with the AST of the argument (the built-ins each
take one argument) and an enum that says which built-in function it is. There are three
standard functions, sqrt, exp, and log, as well as print, a function that prints its argu-
ment and returns the argument as its value. Calls to user functions have a ufncall node
with a pointer to the function, which is an entry in the symbol table, and an AST, which
is a list of the arguments.

Flow control expressions if/then/else and while/do use a flow node with the control
expression, the then branch or do list, and the optional else branch.

Constants are numval as before; references to symbols are symref with a pointer to the
symbol in the symbol table; and assignments are symasgn with a pointer to the symbol
to be assigned and the AST of the value to assign to it.

Every AST has a value. The value of an if/then/else is the value of the branch taken; the
value of while/do is the last value of the do list; and the value of a list of expressions is
the last expression.‖ Finally, we have C procedures to create each kind of AST node
and a procedure to create a user-defined function.

Advanced Calculator Parser
Example 3-6 shows the parser for the advanced AST calculator.

Example 3-6. Advanced calculator parser fb3-2.y

/* calculator with AST */

%{
include <stdio.h>
include <stdlib.h>
include "fb3-2.h"
%}

%union {
 struct ast *a;
 double d;
 struct symbol *s; /* which symbol */
 struct symlist *sl;
 int fn; /* which function */
}

/* declare tokens */
%token <d> NUMBER
%token <s> NAME
%token <fn> FUNC
%token EOL

‖ This design is vaguely based on the ancient BLISS system programming language. It would be perfectly
possible to design an AST that treated expressions and statements separately, but the implementation is a
little simpler this way.

64 | Chapter 3: Using Bison

Download at Boykma.Com

%token IF THEN ELSE WHILE DO LET

%nonassoc <fn> CMP
%right '='
%left '+' '-'
%left '*' '/'
%nonassoc '|' UMINUS

%type <a> exp stmt list explist
%type <sl> symlist

%start calclist
%%

The %union here defines many kinds of symbol values, which is typical in realistic bison
parsers. As well as a pointer to an AST and a numeric value, a value can be a pointer
to the symbol table for a user symbol, a list of symbols, or a subtype of a comparison
or function token. (We use the word symbol somewhat confusingly here, both for
names used in the bison grammar and for names that the user types into the compiled
program. We’ll say user symbol for the latter when the context isn’t otherwise clear.)

There’s a new token FUNC for the built-in functions, with the value indicating which
function, and six reserved words, IF through LET. The token CMP is any of the six com-
parison operators, with the value indicating which operator. (This trick of using one
token for several syntactically similar operators helps keep down the size of the
grammar.)

The list of precedence declarations starts with the new CMP and = operators.

A %start declaration identifies the top-level rule, so we don’t have to put it at the
beginning of the parser.

Calculator Statement Syntax
stmt: IF exp THEN list { $$ = newflow('I', $2, $4, NULL); }
 | IF exp THEN list ELSE list { $$ = newflow('I', $2, $4, $6); }
 | WHILE exp DO list { $$ = newflow('W', $2, $4, NULL); }
 | exp
;

list: /* nothing */ { $$ = NULL; }
 | stmt ';' list { if ($3 == NULL)
 $$ = $1;
 else
 $$ = newast('L', $1, $3);
 }
 ;

Our grammar distinguishes between statements (stmt) and expressions (exp). A state-
ment is either a flow of control (if/then/else or while/do) or an expression. The if and
while statements take lists of statements, with each statement in the list being followed

An Advanced Calculator | 65

Download at Boykma.Com

by a semicolon. Each rule that matches a statement calls a routine to build an appro-
priate AST node.

The design of the syntax here is largely arbitrary, and one of the nice things about using
bison to build a parser is that it’s easy to experiment with variations. The interplay
among bits of the syntax can be quite subtle; if, for example, the definition of list had
put semicolons between rather than after each statement, the grammar would be am-
biguous unless the grammar also added closing FI and ENDDO tokens to indicate the end
of if/then and while/do statements.

The definition of list is right recursive, that is, stmt ; list rather than list stmt ;.
It doesn’t make any difference to the language recognized, but it makes it easier to build
the list of statements linked from head to tail rather than from tail to head. Each time
the stmt ; list rule is reduced, it creates a link that adds the statement to the head of
the list so far. If the rule were list stmt ;, the statement would need to go at the tail
of the list, which would require either a more complex circularly linked list or else
reversing the list at the end (as we did with the list of references in Chapter 1).

One disadvantage of right recursion rather than left is that right recursion puts up all
of the yet-to-be-reduced statements on the parser stack and then reduces them all at
the end of the list, while left recursion builds the list a statement at a time as the input
is parsed. In a situation like this, where the list is unlikely to be more than a few items
long, it doesn’t matter, but in a language where the list might be a list of thousands of
items, it’s worth making the list with a left recursive rule and then reversing it to prevent
parser stack overflow. Some programmers also find left recursion to be easier to debug,
since it tends to produce output after each statement rather than all at once at the end.

Calculator Expression Syntax
exp: exp CMP exp { $$ = newcmp($2, $1, $3); }
 | exp '+' exp { $$ = newast('+', $1,$3); }
 | exp '-' exp { $$ = newast('-', $1,$3);}
 | exp '*' exp { $$ = newast('*', $1,$3); }
 | exp '/' exp { $$ = newast('/', $1,$3); }
 | '|' exp { $$ = newast('|', $2, NULL); }
 | '(' exp ')' { $$ = $2; }
 | '-' exp %prec UMINUS { $$ = newast('M', $2, NULL); }
 | NUMBER { $$ = newnum($1); }
 | NAME { $$ = newref($1); }
 | NAME '=' exp { $$ = newasgn($1, $3); }
 | FUNC '(' explist ')' { $$ = newfunc($1, $3); }
 | NAME '(' explist ')' { $$ = newcall($1, $3); }
;

explist: exp
 | exp ',' explist { $$ = newast('L', $1, $3); }
;
symlist: NAME { $$ = newsymlist($1, NULL); }
 | NAME ',' symlist { $$ = newsymlist($1, $3); }
;

66 | Chapter 3: Using Bison

Download at Boykma.Com

The expression syntax is a modestly expanded version of the expression syntax in the
previous example. A new rule for CMP handles the six comparison operators, using the
value of the CMP to tell which operator it was, and a rule for assignments creates an
assignment node.

There are separate rules for built-in functions identified by a reserved name (FUNC) and
user functions identified by a user symbol (NAME).

A rule for explist, a list of expressions, builds an AST of the expressions used for the
actual arguments to a function call. A separate rule for symlist, a list of symbols, builds
a linked list of symbols for the dummy arguments in a function definition. Both are
right recursive to make it easier to build the list in the desired order.

Top-Level Calculator Grammar
calclist: /* nothing */
 | calclist stmt EOL {
 printf("= %4.4g\n> ", eval($2));
 treefree($2);
 }
 | calclist LET NAME '(' symlist ')' '=' list EOL {
 dodef($3, $5, $8);
 printf("Defined %s\n> ", $3->name); }

 | calclist error EOL { yyerrok; printf("> "); }
 ;

The last bit of grammar is the top level, which recognizes a list of statements and func-
tion declarations. As before, the top level evaluates the AST for a statement, prints the
result, and then frees the AST. A function definition is just saved for future use.

Basic Parser Error Recovery
The last rule in the parser provides a small amount of error recovery. Because of the
way that bison parsers work, it’s rarely worth the effort to try to correct errors, but it’s
at least possible to recover to a state where the parser can continue. The special pseudo-
token error indicates an error recovery point. When a bison parser encounters an error,
it starts discarding symbols from the parser stack until it reaches a point where an
error token would be valid; then it discards input tokens until it finds one it can shift
in its current state, and then continues parsing from there. If the parse fails again, it
discards more stack symbols and input tokens until either it can resume parsing or the
stack is empty and the parse fails. To avoid a cascade of misleading error messages, the
parser normally suppresses any parse error messages after the first one until it has
successfully shifted three tokens in a row. The macro yyerrok in an action tells the
parser that recovery is done, so subsequent error messages will be produced.

Although it’s possible in principle to add lots of error rules to try to do lots of error
recovery, in practice it’s rare to have more than one or two error rules. The error token

An Advanced Calculator | 67

Download at Boykma.Com

is almost always used to resynchronize at a punctuation character in a top-level recur-
sive rule as we do here.

If the symbols discarded in error recovery from the stack have values that point to
allocated storage, the error recovery process will leak storage, since the discarded values
are never freed. In this example, we don’t worry about it, but bison does provide a
feature to tell the parser to call your code to free discarded values, described in
Chapter 6.

The Advanced Calculator Lexer
Example 3-7. Advanced calculator lexer fb3-2.l

/* recognize tokens for the calculator */
%option noyywrap nodefault yylineno
%{
include "fb3-2.h"
include "fb3-2.tab.h"
%}

/* float exponent */
EXP ([Ee][-+]?[0-9]+)

%%
 /* single character ops */
"+" |
"-" |
"*" |
"/" |
"=" |
"|" |
"," |
";" |
"(" |
")" { return yytext[0]; }

 /* comparison ops, all are a CMP token */
">" { yylval.fn = 1; return CMP; }
"<" { yylval.fn = 2; return CMP; }
"<>" { yylval.fn = 3; return CMP; }
"==" { yylval.fn = 4; return CMP; }
">=" { yylval.fn = 5; return CMP; }
"<=" { yylval.fn = 6; return CMP; }

 /* keywords */

"if" { return IF; }
"then" { return THEN; }
"else" { return ELSE; }
"while" { return WHILE; }
"do" { return DO; }
"let" { return LET;}

68 | Chapter 3: Using Bison

Download at Boykma.Com

 /* built-in functions */
"sqrt" { yylval.fn = B_sqrt; return FUNC; }
"exp" { yylval.fn = B_exp; return FUNC; }
"log" { yylval.fn = B_log; return FUNC; }
"print" { yylval.fn = B_print; return FUNC; }

 /* names */
[a-zA-Z][a-zA-Z0-9]* { yylval.s = lookup(yytext); return NAME; }

[0-9]+"."[0-9]*{EXP}? |
"."?[0-9]+{EXP}? { yylval.d = atof(yytext); return NUMBER; }

"//".*
[\t] /* ignore whitespace */

\\\n { printf("c> "); } /* ignore line continuation */

\n { return EOL; }

. { yyerror("Mystery character %c\n", *yytext); }
%%

The lexer, shown in Example 3-7, adds a few new rules to the previous example. There
are a few new single-character operators. The six comparison operators all return a
CMP token with a lexical value to distinguish them.

The six keywords and four built-in functions are recognized by literal patterns. Note
that they have to precede the general pattern to match a name so that they’re matched
in preference to the general pattern. The name pattern looks up the name in the symbol
table and returns a pointer to the symbol.

As before, a newline (EOL) marks the end of an input string. Since a function or expres-
sion might be too long to type on a single line, we allow continuation lines. A new lexer
rule matches a backslash and newline and doesn’t return anything to the parser, making
the continuation invisible to the parser. But it does print a prompt for the user.

Reserved Words
In this grammar, the words if, then, else, while, do, let, sqrt, exp, log, and print are
reserved and can’t be used as user symbols. Whether you want to allow users to use
the same name for two things in the same program is debatable. On the one hand, it
can make programs harder to understand, but on the other hand, users are otherwise
forced to invent names that do not conflict with the reserved names.

Either can be taken to extremes. COBOL has more than 300 reserved words, so nobody
can remember them all, and programmers resort to strange conventions like starting
every variable name with a digit to be sure it doesn’t conflict with a reserved word. On
the other hand, PL/I has no reserved words at all, so you can write the following:

 IF IF = THEN THEN ELSE = THEN; ELSE ELSE = IF;

An Advanced Calculator | 69

Download at Boykma.Com

Bison parsers are a lot easier to write if you reserve the keywords; otherwise, you need
to carefully design your language so at each point where the lexer is reading a token,
either a name or a keyword is valid, but not both, and you have to provide extensive
feedback to the lexer so it knows which to do. Having written lexers for Fortran, which
has no reserved words and (in its classic versions) ignores all whitespace, I strongly
encourage you to reserve your keywords.

Building and Interpreting ASTs
Finally, we have the file of helper code, shown in Example 3-8. Some of this file is the
same as the previous example; the main and yyerror are unchanged and aren’t repeated
here.

The key code builds and evaluates the ASTs. First, we have the symbol table manage-
ment, which should be familiar from the examples in Chapter 2.

Example 3-8. Advanced calculator helper functions fb3-2func.c

/*
 * helper functions for fb3-2
 */
include <stdio.h>
include <stdlib.h>
include <stdarg.h>
include <string.h>
include <math.h>
include "fb3-2.h"

/* symbol table */
/* hash a symbol */
static unsigned
symhash(char *sym)
{
 unsigned int hash = 0;
 unsigned c;

 while(c = *sym++) hash = hash*9 ^ c;

 return hash;
}

struct symbol *
lookup(char* sym)
{
 struct symbol *sp = &symtab[symhash(sym)%NHASH];
 int scount = NHASH; /* how many have we looked at */

 while(--scount >= 0) {
 if(sp->name && !strcmp(sp->name, sym)) { return sp; }

 if(!sp->name) { /* new entry */
 sp->name = strdup(sym);

70 | Chapter 3: Using Bison

Download at Boykma.Com

 sp->value = 0;
 sp->func = NULL;
 sp->syms = NULL;
 return sp;
 }

 if(++sp >= symtab+NHASH) sp = symtab; /* try the next entry */
 }
 yyerror("symbol table overflow\n");
 abort(); /* tried them all, table is full */

}

Next come the procedures to build the AST nodes and symlists. They all allocate a node
and then fill in the fields appropriately for the node type. An extended version of
treefree recursively walks an AST and frees all of the nodes in the tree.

struct ast *
newast(int nodetype, struct ast *l, struct ast *r)
{
 struct ast *a = malloc(sizeof(struct ast));

 if(!a) {
 yyerror("out of space");
 exit(0);
 }
 a->nodetype = nodetype;
 a->l = l;
 a->r = r;
 return a;
}

struct ast *
newnum(double d)
{
 struct numval *a = malloc(sizeof(struct numval));

 if(!a) {
 yyerror("out of space");
 exit(0);
 }
 a->nodetype = 'K';
 a->number = d;
 return (struct ast *)a;
}

struct ast *
newcmp(int cmptype, struct ast *l, struct ast *r)
{
 struct ast *a = malloc(sizeof(struct ast));

 if(!a) {
 yyerror("out of space");
 exit(0);
 }

An Advanced Calculator | 71

Download at Boykma.Com

 a->nodetype = '0' + cmptype;
 a->l = l;
 a->r = r;
 return a;
}

struct ast *
newfunc(int functype, struct ast *l)
{
 struct fncall *a = malloc(sizeof(struct fncall));

 if(!a) {
 yyerror("out of space");
 exit(0);
 }
 a->nodetype = 'F';
 a->l = l;
 a->functype = functype;
 return (struct ast *)a;
}

struct ast *
newcall(struct symbol *s, struct ast *l)
{
 struct ufncall *a = malloc(sizeof(struct ufncall));

 if(!a) {
 yyerror("out of space");
 exit(0);
 }
 a->nodetype = 'C';
 a->l = l;
 a->s = s;
 return (struct ast *)a;
}

struct ast *
newref(struct symbol *s)
{
 struct symref *a = malloc(sizeof(struct symref));

 if(!a) {
 yyerror("out of space");
 exit(0);
 }
 a->nodetype = 'N';
 a->s = s;
 return (struct ast *)a;
}

struct ast *
newasgn(struct symbol *s, struct ast *v)
{
 struct symasgn *a = malloc(sizeof(struct symasgn));

72 | Chapter 3: Using Bison

Download at Boykma.Com

 if(!a) {
 yyerror("out of space");
 exit(0);
 }
 a->nodetype = '=';
 a->s = s;
 a->v = v;
 return (struct ast *)a;
}

struct ast *
newflow(int nodetype, struct ast *cond, struct ast *tl, struct ast *el)
{
 struct flow *a = malloc(sizeof(struct flow));

 if(!a) {
 yyerror("out of space");
 exit(0);
 }
 a->nodetype = nodetype;
 a->cond = cond;
 a->tl = tl;
 a->el = el;
 return (struct ast *)a;
}

/* free a tree of ASTs */
void
treefree(struct ast *a)
{
 switch(a->nodetype) {

 /* two subtrees */
 case '+':
 case '-':
 case '*':
 case '/':
 case '1': case '2': case '3': case '4': case '5': case '6':
 case 'L':
 treefree(a->r);

 /* one subtree */
 case '|':
 case 'M': case 'C': case 'F':
 treefree(a->l);

 /* no subtree */
 case 'K': case 'N':
 break;

 case '=':
 free(((struct symasgn *)a)->v);
 break;

 /* up to three subtrees */

An Advanced Calculator | 73

Download at Boykma.Com

 case 'I': case 'W':
 free(((struct flow *)a)->cond);
 if(((struct flow *)a)->tl) treefree(((struct flow *)a)->tl);
 if(((struct flow *)a)->el) treefree(((struct flow *)a)->el);
 break;

 default: printf("internal error: free bad node %c\n", a->nodetype);
 }

 free(a); /* always free the node itself */
}

struct symlist *
newsymlist(struct symbol *sym, struct symlist *next)
{
 struct symlist *sl = malloc(sizeof(struct symlist));

 if(!sl) {
 yyerror("out of space");
 exit(0);
 }
 sl->sym = sym;
 sl->next = next;
 return sl;
}

/* free a list of symbols */
void
symlistfree(struct symlist *sl)
{
 struct symlist *nsl;

 while(sl) {
 nsl = sl->next;
 free(sl);
 sl = nsl;
 }
}

The heart of the calculator is eval, which evaluates an AST built up in the parser.
Following the practice in C, comparisons return 1 or 0 depending on whether the com-
parison succeeds, and tests in if/then/else and while/do treat any nonzero as true.

For expressions, we do the familiar depth-first tree walk to compute the value. An AST
makes it straightforward to implement if/then/else: Evaluate the condition AST to de-
cide which branch to take, and then evaluate the AST for the path to be taken. To
evaluate while/do loops, a loop in eval evaluates the condition AST, then the body AST,
repeating as long as the condition AST remains true. Any AST that references variables
that are changed by an assignment will have a new value each time it’s evaluated.

static double callbuiltin(struct fncall *);
static double calluser(struct ufncall *);

double

74 | Chapter 3: Using Bison

Download at Boykma.Com

eval(struct ast *a)
{
 double v;

 if(!a) {
 yyerror("internal error, null eval");
 return 0.0;
 }

 switch(a->nodetype) {
 /* constant */
 case 'K': v = ((struct numval *)a)->number; break;

 /* name reference */
 case 'N': v = ((struct symref *)a)->s->value; break;

 /* assignment */
 case '=': v = ((struct symasgn *)a)->s->value =
 eval(((struct symasgn *)a)->v); break;

 /* expressions */
 case '+': v = eval(a->l) + eval(a->r); break;
 case '-': v = eval(a->l) - eval(a->r); break;
 case '*': v = eval(a->l) * eval(a->r); break;
 case '/': v = eval(a->l) / eval(a->r); break;
 case '|': v = fabs(eval(a->l)); break;
 case 'M': v = -eval(a->l); break;

 /* comparisons */
 case '1': v = (eval(a->l) > eval(a->r))? 1 : 0; break;
 case '2': v = (eval(a->l) < eval(a->r))? 1 : 0; break;
 case '3': v = (eval(a->l) != eval(a->r))? 1 : 0; break;
 case '4': v = (eval(a->l) == eval(a->r))? 1 : 0; break;
 case '5': v = (eval(a->l) >= eval(a->r))? 1 : 0; break;
 case '6': v = (eval(a->l) <= eval(a->r))? 1 : 0; break;

 /* control flow */
 /* null expressions allowed in the grammar, so check for them */

 /* if/then/else */
 case 'I':
 if(eval(((struct flow *)a)->cond) != 0) { check the condition
 if(((struct flow *)a)->tl) { the true branch
 v = eval(((struct flow *)a)->tl);
 } else
 v = 0.0; /* a default value */
 } else {
 if(((struct flow *)a)->el) { the false branch
 v = eval(((struct flow *)a)->el);
 } else
 v = 0.0; /* a default value */
 }
 break;

 /* while/do */

An Advanced Calculator | 75

Download at Boykma.Com

 case 'W':
 v = 0.0; /* a default value */

 if(((struct flow *)a)->tl) {
 while(eval(((struct flow *)a)->cond) != 0) evaluate the condition
 v = eval(((struct flow *)a)->tl); evaluate the target statements
 }
 break; /* value of last statement is value of while/do */

 /* list of statements */
 case 'L': eval(a->l); v = eval(a->r); break;

 case 'F': v = callbuiltin((struct fncall *)a); break;

 case 'C': v = calluser((struct ufncall *)a); break;

 default: printf("internal error: bad node %c\n", a->nodetype);
 }
 return v;
}

Evaluating Functions in the Calculator
The trickiest bits of code in the evaluator handle functions. Built-in functions are rel-
atively straightforward: They determine which function it is and call specific code to
do the function.

static double
callbuiltin(struct fncall *f)
{
 enum bifs functype = f->functype;
 double v = eval(f->l);

 switch(functype) {
 case B_sqrt:
 return sqrt(v);
 case B_exp:
 return exp(v);
 case B_log:
 return log(v);
 case B_print:
 printf("= %4.4g\n", v);
 return v;
 default:
 yyerror("Unknown built-in function %d", functype);
 return 0.0;
 }
}

User-Defined Functions
A function definition consists of the name of the function, a list of dummy arguments,
and an AST that represents the body of the function. Defining the function simply saves

76 | Chapter 3: Using Bison

Download at Boykma.Com

the argument list and AST in the function’s symbol table entry, replacing any previous
version.

/* define a function */
void
dodef(struct symbol *name, struct symlist *syms, struct ast *func)
{
 if(name->syms) symlistfree(name->syms);
 if(name->func) treefree(name->func);
 name->syms = syms;
 name->func = func;
}

Say you define a function to calculate the maximum of its two arguments:

> let max(x,y) = if x >= y then x; else y;;
> max(4+5,6+7)

The function has two dummy arguments, x and y. When the function is called, the
evaluator does this:

1. Evaluate the actual arguments, 4+5 and 6+7 in this case.

2. Save the current values of the dummy arguments and assign the values of the actual
arguments to them.

3. Evaluate the body of the function, which will now use the actual argument values
when it refers to the dummy arguments.

4. Put back the old values of the dummies.

5. Return the value of the body expression.

The code to do this counts the arguments, allocates two temporary arrays for the old
and new values of the dummy arguments, and then does the steps described earlier.

static double
calluser(struct ufncall *f)
{
 struct symbol *fn = f->s; /* function name */
 struct symlist *sl; /* dummy arguments */
 struct ast *args = f->l; /* actual arguments */
 double *oldval, *newval; /* saved arg values */
 double v;
 int nargs;
 int i;

 if(!fn->func) {
 yyerror("call to undefined function", fn->name);
 return 0;
 }

 /* count the arguments */
 sl = fn->syms;
 for(nargs = 0; sl; sl = sl->next)
 nargs++;

An Advanced Calculator | 77

Download at Boykma.Com

 /* prepare to save them */
 oldval = (double *)malloc(nargs * sizeof(double));
 newval = (double *)malloc(nargs * sizeof(double));
 if(!oldval || !newval) {
 yyerror("Out of space in %s", fn->name); return 0.0;
 }

 /* evaluate the arguments */
 for(i = 0; i < nargs; i++) {
 if(!args) {
 yyerror("too few args in call to %s", fn->name);
 free(oldval); free(newval);
 return 0.0;
 }

 if(args->nodetype == 'L') { /* if this is a list node */
 newval[i] = eval(args->l);
 args = args->r;
 } else { /* if it's the end of the list */
 newval[i] = eval(args);
 args = NULL;
 }
 }

 /* save old values of dummies, assign new ones */
 sl = fn->syms;
 for(i = 0; i < nargs; i++) {
 struct symbol *s = sl->sym;

 oldval[i] = s->value;
 s->value = newval[i];
 sl = sl->next;
 }

 free(newval);

 /* evaluate the function */
 v = eval(fn->func);

 /* put the real values of the dummies back */
 sl = fn->syms;
 for(i = 0; i < nargs; i++) {
 struct symbol *s = sl->sym;

 s->value = oldval[i];
 sl = sl->next;
 }

 free(oldval);
 return v;
}

78 | Chapter 3: Using Bison

Download at Boykma.Com

Using the Advanced Calculator
This calculator is flexible enough to do some useful calculations. Example 3-9 shows
the function sq to compute square roots iteratively using Newton’s method, as well as
an auxiliary function avg to compute the average of two numbers.

Example 3-9. Computing square roots with the calculator

> let sq(n)=e=1; while |((t=n/e)-e)>.001 do e=avg(e,t);;
Defined sq
> let avg(a,b)=(a+b)/2;
Defined avg
> sq(10)
= 3.162
> sqrt(10)
= 3.162
> sq(10)-sqrt(10)
= 0.000178 accurate to better than the .001 cutoff

Exercises
1. Try some variants of the syntax in the enhanced calculator. In the previous exam-

ple, the sq function has to end with two semicolons to close off both the while loop
and the let statement, which is pretty clunky. Can you change the syntax to make
it more intuitive? If you add closing symbols to conditional statements if/then/else/
fi and loops while/do/done, can you make the syntax of statement lists more
flexible?

2. In the last example, user functions evaluate all of the actual arguments, put them
in a temporary array, and then assign them to the dummy arguments. Why not
just do them one at a time and set the dummies as the actuals are evaluated?

Exercises | 79

Download at Boykma.Com

Download at Boykma.Com

CHAPTER 4

Parsing SQL

SQL (which stands for Structured Query Language and is usually pronounced sequel)
is the most common language used to handle relational databases.* We’ll develop a
SQL parser that produces a compact tokenized version of SQL statements.

This parser is based on the version of SQL used in the popular MySQL open source
database. MySQL actually uses a bison parser to parse its SQL input, although for a
variety of reasons this parser isn’t based on mySQL’s parser but rather is based on the
description of the language in the manual.

MySQL’s parser is much longer and more complex, since this pedagogical example
leaves out many of the less heavily used parts. MySQL’s parser is written in an odd way
that uses bison to generate a C parser that’s compiled by the C++ compiler, with a
handwritten C++ lexer. There’s also the detail that its license doesn’t allow excerpting
in a book like this one. But if you’re interested, it’s the file sql/sql_yacc.yy, which is
part of the source code at http://dev.mysql.com/downloads/mysql/5.1.html.

The ultimate definitions for SQL are the standards documents published by ANSI and
ISO including ISO/IEC 9075-2:2003, which defines SQL, and a variety of related docu-
ments that define the way to embed SQL in other programming languages and in XML.

A Quick Overview of SQL
SQL is a special-purpose language for relational databases. Rather than manipulating
data in memory, it manipulates data in database tables, referring to memory only in-
cidentally.

* SQL is the Fortran of databases—nobody likes it much, the language is ugly and ad hoc, every database
supports it, and we all use it.

81

Download at Boykma.Com

http://dev.mysql.com/downloads/mysql/5.1.html

Relational Databases
A database is a collection of tables, which are analogous to files. Each table contains
rows and columns, which are analogous to records and fields. The rows in a table are
not kept in any particular order. You create a set of tables by giving the name and type
of each column:

CREATE TABLE Foods (
 name CHAR(8) NOT NULL,
 type CHAR(5),
 flavor CHAR(6),
 PRIMARY KEY (name)
)

CREATE TABLE Courses (
 course CHAR(8) NOT NULL PRIMARY KEY,
 flavor CHAR(6),
 sequence INTEGER
)

The syntax is completely free-format, and there are often several different syntactic
ways to write the same thing—notice the two different ways we gave the PRIMARY KEY
specifier. (The primary key in a table is a column, or set of columns, that uniquely
specifies a row.) Table 4-1 shows the two tables we just created after loading in data.

Table 4-1. Two relational tables

Foods Courses

name type flavor course flavor sequence

peach fruit sweet salad savory 1

tomato fruit savory main savory 2

lemon fruit sour dessert sweet 3

lard fat bland

cheddar fat savory

SQL implements what’s known as a tuple calculus, where tuple is relational-ese for a
record, which is an ordered list of fields or expressions. To use a database, you tell the
database what tuples you want it to extract from your data. It’s up to the database to
figure out how to get it from the tables it has. (That’s the calculus part.) The specifi-
cation of a set of desired data is a query. For example, using the two tables in Ta-
ble 4-1, to get a list of fruits, you would say the following:

SELECT name, flavor
FROM Foods
WHERE Foods.type = "fruit"

The response is shown in Table 4-2.

82 | Chapter 4: Parsing SQL

Download at Boykma.Com

Table 4-2. SQL response table

name flavor

peach sweet

tomato savory

lemon sour

You can also ask questions spanning more than one table. To get a list of foods suitable
to each course of the meal, you say the following:

SELECT course, name, Foods.flavor, type
FROM Courses, Foods
WHERE Courses.flavor = Foods.flavor

The response is shown in Table 4-3.

Table 4-3. Second SQL response table

course name flavor type

salad tomato savory fruit

salad cheddar savory fat

main tomato savory fruit

main cheddar savory fat

dessert peach sweet fruit

When listing the column names, we can leave out the table name if the column name
is unambiguous.

Manipulating Relations
SQL has a rich set of table manipulation commands. You can read and write individual
rows with SELECT, INSERT, UPDATE, and DELETE commands. The SELECT statement has a
very complex syntax that lets you look for values in columns; compare columns to each
other; do arithmetic; and compute minimum, maximum, average, and group totals.

Three Ways to Use SQL
In the original version of SQL, users typed commands into a file or directly at the
terminal and received responses immediately. People still sometimes use it this way for
creating tables and for debugging, but for the vast majority of applications, SQL com-
mands come from inside programs, and the results are returned to those programs. The
SQL standard defines a “module language” to embed SQL in a variety of programming
languages, but MySQL avoids the issue by using subroutine calls for communication
between a user program and the database, and it doesn’t use the module language at all.

Three Ways to Use SQL | 83

Download at Boykma.Com

Since the syntax of SQL is so large, we have reproduced the entire grammar in one place
in the Appendix, with a cross-reference for all of the symbols in the grammar.

SQL to RPN
Our tokenized version of SQL will use a version of Reverse Polish Notation (RPN),
familiar to users of HP calculators. In 1920, Polish logician Jan Łukasiewicz† realized
that if you put the operators before the operands in logical expressions, you don’t need
any parentheses or other punctuation to describe the order of evaluation:

(a+b)*c * + a b c
a+(b*c) + a * b c

It works equally well in reverse, if you put the operators after the operands:

(a+b)*c a b + c *
a+(b*c) a b c * +

On a computer, RPN has the practical advantage that it is very easy to interpret using
a stack. The computer processes each token in order. If it’s an operand, it pushes the
token on the stack. If it’s an operator, it pops the right number of operands off the
stack, does the operation, and pushes the result. This trick is very well known and has
been used since 1954 to build software and hardware that interprets RPN code using
a stack.

RPN has two other advantages for compiler developers. One is that if you’re using a
bottom-up parser like the ones that bison generates, it is amazingly easy to generate
RPN. If you emit the action code for each operator or operand in the rule that recognizes
it, your code will come out in RPN order. Here’s a sneak preview of part of the SQL
parser:

expr: NAME { emit("NAME %s", $1); }
 | INTNUM { emit("NUMBER %d", $1); }
 | expr '+' expr { emit("ADD"); }
 | expr '-' expr { emit("SUB"); }
 | expr '*' expr { emit("MUL"); }
 | expr '/' expr { emit("DIV"); }

When it parses a+2*3, it emits NAME a, NUMBER 2, NUMBER 3, MUL, ADD. This lovely
property comes directly from the way a LALR parser works, pushing the symbols for
partially parsed rules on its internal stack and then at the end of each rule popping the
symbols and pushing the new LHS symbol, which is a sequence of operations just the
same as what an RPN interpreter does.

The other advantage is that it is very easy to turn a string of RPN tokens into an AST,
and vice versa. To turn RPN into an AST, you run through the RPN pushing each
operand and, for each operator, pop the operands, build an AST tree node with the

† It’s called Polish notation because people don’t know how to pronounce Łukasiewicz. It’s roughly WOO-
ka-shay-vits.

84 | Chapter 4: Parsing SQL

Download at Boykma.Com

operands and operator, and then push the address of the new tree node. When you’re
done, the stack will contain the root of the AST. To go the other way, you do a depth-
first walk of the AST. Starting from the root of the AST, at each node you visit the
subnodes (by recursively calling the tree-walking subroutine) and then emit the oper-
ator for the node. At leaf nodes, you just emit the operand for that node.

Classic RPN has a fixed number of operands for each operator, but we’re going to relax
the rules a little and have some operators that take a variable number of operands, with
the number as part of the operator. For example:

select a,b,c from d;

rpn: NAME a
rpn: NAME b
rpn: NAME c
rpn: TABLE d
rpn: SELECT 3

The 3 in the SELECT tells the RPN interpreter that the statement is selecting three things,
so after it pops the table name, it should take the three field names off the stack. I’ve
written interpreters for RPN code, and this trick makes the code a lot simpler than the
alternative of using extra tree-building operators to combine the variable number of
operands into one before handing the combined operand to the main operator.

The Lexer
First we need a lexer for the tokens that SQL uses. The syntax is free-format, with
whitespace ignored except to separate words. There is a fairly long but fixed set of
reserved words. The other tokens are conventional: names, strings, numbers, and
punctuation. Comments are Ada-style, from a pair of dashes to the end of the line, with
a MySQL extension also allowing C comments.

Example 4-1. MySQL lexer

/*
 * Scanner for mysql subset
 * $Header: /usr/home/johnl/flnb/RCS/ch04.tr,v 1.7 2009/05/19 18:28:27 johnl Exp $
 */

%option noyywrap nodefault yylineno case-insensitive
%{
#include "pmysql.tab.h"
#include <stdarg.h>
#include <string.h>

void yyerror(char *s, ...);

int oldstate;

%}

The Lexer | 85

Download at Boykma.Com

%x COMMENT
%s BTWMODE

%%

The lexer, shown in Example 4-1, starts with a few include files, notably
pmysql.tab.h, the token name definition file generated by bison. It also defines two
start states, an exclusive COMMENT state used in C-style comments and an inclusive
BTWMODE state used in a kludge to deal with a SQL expression that has its own idea of
the keyword AND.

Scanning SQL Keywords
SQL has a lot of keywords:

 /* keywords */

ADD { return ADD; }
ALL { return ALL; }
ALTER { return ALTER; }
ANALYZE { return ANALYZE; }

 /* Hack for BETWEEN ... AND ...
 * return special AND token if BETWEEN seen
 */
<BTWMODE>AND { BEGIN INITIAL; return AND; }
AND { return ANDOP; }
ANY { return ANY; }
AS { return AS; }
ASC { return ASC; }
AUTO_INCREMENT { return AUTO_INCREMENT; }
BEFORE { return BEFORE; }
BETWEEN { BEGIN BTWMODE; return BETWEEN; }
INT8|BIGINT { return BIGINT; }
BINARY { return BINARY; }
BIT { return BIT; }
BLOB { return BLOB; }
BOTH { return BOTH; }
BY { return BY; }
CALL { return CALL; }
CASCADE { return CASCADE; }
CASE { return CASE; }
CHANGE { return CHANGE; }
CHAR(ACTER)? { return CHAR; }
CHECK { return CHECK; }
COLLATE { return COLLATE; }
COLUMN { return COLUMN; }
COMMENT { return COMMENT; }
CONDITION { return CONDITION; }
CONSTRAINT { return CONSTRAINT; }
CONTINUE { return CONTINUE; }
CONVERT { return CONVERT; }
CREATE { return CREATE; }

86 | Chapter 4: Parsing SQL

Download at Boykma.Com

CROSS { return CROSS; }
CURRENT_DATE { return CURRENT_DATE; }
CURRENT_TIME { return CURRENT_TIME; }
CURRENT_TIMESTAMP { return CURRENT_TIMESTAMP; }
CURRENT_USER { return CURRENT_USER; }
CURSOR { return CURSOR; }
DATABASE { return DATABASE; }
DATABASES { return DATABASES; }
DATE { return DATE; }
DATETIME { return DATETIME; }
DAY_HOUR { return DAY_HOUR; }
DAY_MICROSECOND { return DAY_MICROSECOND; }
DAY_MINUTE { return DAY_MINUTE; }
DAY_SECOND { return DAY_SECOND; }
NUMERIC|DEC|DECIMAL { return DECIMAL; }
DECLARE { return DECLARE; }
DEFAULT { return DEFAULT; }
DELAYED { return DELAYED; }
DELETE { return DELETE; }
DESC { return DESC; }
DESCRIBE { return DESCRIBE; }
DETERMINISTIC { return DETERMINISTIC; }
DISTINCT { return DISTINCT; }
DISTINCTROW { return DISTINCTROW; }
DIV { return DIV; }
FLOAT8|DOUBLE { return DOUBLE; }
DROP { return DROP; }
DUAL { return DUAL; }
EACH { return EACH; }
ELSE { return ELSE; }
ELSEIF { return ELSEIF; }
END { return END; }
ENUM { return ENUM; }
ESCAPED { return ESCAPED; }
EXISTS { yylval.subtok = 0; return EXISTS; }
NOT[\t\n]+EXISTS { yylval.subtok = 1; return EXISTS; }
EXIT { return EXIT; }
EXPLAIN { return EXPLAIN; }
FETCH { return FETCH; }
FLOAT4? { return FLOAT; }
FOR { return FOR; }
FORCE { return FORCE; }
FOREIGN { return FOREIGN; }
FROM { return FROM; }
FULLTEXT { return FULLTEXT; }
GRANT { return GRANT; }
GROUP { return GROUP; }
HAVING { return HAVING; }
HIGH_PRIORITY { return HIGH_PRIORITY; }
HOUR_MICROSECOND { return HOUR_MICROSECOND; }
HOUR_MINUTE { return HOUR_MINUTE; }
HOUR_SECOND { return HOUR_SECOND; }
IF { return IF; }
IGNORE { return IGNORE; }
IN { return IN; }

The Lexer | 87

Download at Boykma.Com

INFILE { return INFILE; }
INNER { return INNER; }
INOUT { return INOUT; }
INSENSITIVE { return INSENSITIVE; }
INSERT { return INSERT; }
INT4?|INTEGER { return INTEGER; }
INTERVAL { return INTERVAL; }
INTO { return INTO; }
IS { return IS; }
ITERATE { return ITERATE; }
JOIN { return JOIN; }
INDEX|KEY { return KEY; }
KEYS { return KEYS; }
KILL { return KILL; }
LEADING { return LEADING; }
LEAVE { return LEAVE; }
LEFT { return LEFT; }
LIKE { return LIKE; }
LIMIT { return LIMIT; }
LINES { return LINES; }
LOAD { return LOAD; }
LOCALTIME { return LOCALTIME; }
LOCALTIMESTAMP { return LOCALTIMESTAMP; }
LOCK { return LOCK; }
LONG { return LONG; }
LONGBLOB { return LONGBLOB; }
LONGTEXT { return LONGTEXT; }
LOOP { return LOOP; }
LOW_PRIORITY { return LOW_PRIORITY; }
MATCH { return MATCH; }
MEDIUMBLOB { return MEDIUMBLOB; }
MIDDLEINT|MEDIUMINT { return MEDIUMINT; }
MEDIUMTEXT { return MEDIUMTEXT; }
MINUTE_MICROSECOND { return MINUTE_MICROSECOND; }
MINUTE_SECOND { return MINUTE_SECOND; }
MOD { return MOD; }
MODIFIES { return MODIFIES; }
NATURAL { return NATURAL; }
NOT { return NOT; }
NO_WRITE_TO_BINLOG { return NO_WRITE_TO_BINLOG; }
NULL { return NULLX; }
NUMBER { return NUMBER; }
ON { return ON; }
ON[\t\n]+DUPLICATE { return ONDUPLICATE; } /* hack due to limited lookahead */
OPTIMIZE { return OPTIMIZE; }
OPTION { return OPTION; }
OPTIONALLY { return OPTIONALLY; }
OR { return OR; }
ORDER { return ORDER; }
OUT { return OUT; }
OUTER { return OUTER; }
OUTFILE { return OUTFILE; }
PRECISION { return PRECISION; }
PRIMARY { return PRIMARY; }
PROCEDURE { return PROCEDURE; }

88 | Chapter 4: Parsing SQL

Download at Boykma.Com

PURGE { return PURGE; }
QUICK { return QUICK; }
READ { return READ; }
READS { return READS; }
REAL { return REAL; }
REFERENCES { return REFERENCES; }
REGEXP|RLIKE { return REGEXP; }
RELEASE { return RELEASE; }
RENAME { return RENAME; }
REPEAT { return REPEAT; }
REPLACE { return REPLACE; }
REQUIRE { return REQUIRE; }
RESTRICT { return RESTRICT; }
RETURN { return RETURN; }
REVOKE { return REVOKE; }
RIGHT { return RIGHT; }
ROLLUP { return ROLLUP; }
SCHEMA { return SCHEMA; }
SCHEMAS { return SCHEMAS; }
SECOND_MICROSECOND { return SECOND_MICROSECOND; }
SELECT { return SELECT; }
SENSITIVE { return SENSITIVE; }
SEPARATOR { return SEPARATOR; }
SET { return SET; }
SHOW { return SHOW; }
INT2|SMALLINT { return SMALLINT; }
SOME { return SOME; }
SONAME { return SONAME; }
SPATIAL { return SPATIAL; }
SPECIFIC { return SPECIFIC; }
SQL { return SQL; }
SQLEXCEPTION { return SQLEXCEPTION; }
SQLSTATE { return SQLSTATE; }
SQLWARNING { return SQLWARNING; }
SQL_BIG_RESULT { return SQL_BIG_RESULT; }
SQL_CALC_FOUND_ROWS { return SQL_CALC_FOUND_ROWS; }
SQL_SMALL_RESULT { return SQL_SMALL_RESULT; }
SSL { return SSL; }
STARTING { return STARTING; }
STRAIGHT_JOIN { return STRAIGHT_JOIN; }
TABLE { return TABLE; }
TEMPORARY { return TEMPORARY; }
TERMINATED { return TERMINATED; }
TEXT { return TEXT; }
THEN { return THEN; }
TIME { return TIME; }
TIMESTAMP { return TIMESTAMP; }
INT1|TINYINT { return TINYINT; }
TINYTEXT { return TINYTEXT; }
TO { return TO; }
TRAILING { return TRAILING; }
TRIGGER { return TRIGGER; }
UNDO { return UNDO; }
UNION { return UNION; }
UNIQUE { return UNIQUE; }

The Lexer | 89

Download at Boykma.Com

UNLOCK { return UNLOCK; }
UNSIGNED { return UNSIGNED; }
UPDATE { return UPDATE; }
USAGE { return USAGE; }
USE { return USE; }
USING { return USING; }
UTC_DATE { return UTC_DATE; }
UTC_TIME { return UTC_TIME; }
UTC_TIMESTAMP { return UTC_TIMESTAMP; }
VALUES? { return VALUES; }
VARBINARY { return VARBINARY; }
VARCHAR(ACTER)? { return VARCHAR; }
VARYING { return VARYING; }
WHEN { return WHEN; }
WHERE { return WHERE; }
WHILE { return WHILE; }
WITH { return WITH; }
WRITE { return WRITE; }
XOR { return XOR; }
YEAR { return YEAR; }
YEAR_MONTH { return YEAR_MONTH; }
ZEROFILL { return ZEROFILL; }

All of the reserved words are separate tokens in the parser, because it is the easiest thing
to do. Notice that CHARACTER and VARCHARACTER can be abbreviated to CHAR and VAR
CHAR, and INDEX and KEY are the same as each other.

The keyword BETWEEN switches into start state BTWMODE, in which the word AND returns
the token AND rather than ANDOP. The reason is that normally AND is treated the same as
the && logical-and operator, except in the SQL operator BETWEEN ... AND:

 IF(a && b, ...) normally these mean the same thing
 IF(a AND b, ...)

 ... WHERE a BETWEEN c AND d, ... except here

There’s a variety of ways to deal with problems like this, but lexical special cases are
often the easiest.

Also note that the phrases NOT EXISTS and ON DUPLICATE are recognized as single tokens;
this is to avoid shift/reduce conflicts in the parser because of other contexts where
NOT and ON can appear. To remember the difference between EXISTS and NOT EXISTS,
the lexer returns a value along with the token that the parser uses when generating the
token code. These two don’t actually turn out to be ambiguous, but parsing them needs
more than the single-token lookahead that bison usually uses. We revisit these in
Chapter 9 where the alternate GLR parser can handle them directly.

Scanning Numbers
Numbers come in a variety of forms:

 /* numbers */

90 | Chapter 4: Parsing SQL

Download at Boykma.Com

-?[0-9]+ { yylval.intval = atoi(yytext); return INTNUM; }

-?[0-9]+"."[0-9]* |
-?"."[0-9]+ |
-?[0-9]+E[-+]?[0-9]+ |
-?[0-9]+"."[0-9]*E[-+]?[0-9]+ |
-?"."[0-9]+E[-+]?[0-9]+ { yylval.floatval = atof(yytext) ;
 return APPROXNUM; }
 /* booleans */
TRUE { yylval.intval = 1; return BOOL; }
UNKNOWN { yylval.intval = -1; return BOOL; }
FALSE { yylval.intval = 0; return BOOL; }

 /* strings */

'(\\.|''|[^'\n])*' |
\"(\\.|\"\"|[^"\n])*\" { yylval.strval = strdup(yytext); return STRING; }

'(\\.|[^'\n])*$ { yyerror("Unterminated string %s", yytext); }
\"(\\.|[^"\n])*$ { yyerror("Unterminated string %s", yytext); }

 /* hex strings */
X'[0-9A-F]+' |
0X[0-9A-F]+ { yylval.strval = strdup(yytext); return STRING; }

 /* bit strings */

0B[01]+ |
B'[01]+' { yylval.strval = strdup(yytext); return STRING; }

SQL numbers are similar to the numbers we’ve seen in previous chapters. The rules to
scan them turn them into C integers or doubles and store them in the token values.
Boolean values are true, false, and unknown, so they’re recognized as reserved words
and returned as variations on a BOOL token.

SQL strings are enclosed in single quotes, using a pair of quotes to represent a single
quote in the string. MySQL extends this to add double-quoted strings, and \x escapes
within strings. The first two string patterns match valid, quoted strings that don’t ex-
tend past a newline and return the string as the token value, remembering to make a
copy since the value in yytext doesn’t stay around.‡ The next two patterns catch un-
terminated strings and print a suitable diagnostic.

The next four patterns match hex and binary strings, each of which can be written in
two ways. A more realistic example would convert them to binary, but for our purposes
we just return them as strings.

Scanning Operators and Punctuation
Operators and punctuation can be captured with a few patterns:

‡ MySQL actually accepts multiline strings, but we’re keeping this example simple.

The Lexer | 91

Download at Boykma.Com

 /* operators */
[-+&~|^/%*(),.;!] { return yytext[0]; }

"&&" { return ANDOP; }
"||" { return OR; }

"=" { yylval.subtok = 4; return COMPARISON; }
"<=>" { yylval.subtok = 12; return COMPARISON; }
">=" { yylval.subtok = 6; return COMPARISON; }
">" { yylval.subtok = 2; return COMPARISON; }
"<=" { yylval.subtok = 5; return COMPARISON; }
"<" { yylval.subtok = 1; return COMPARISON; }
"!=" |
"<>" { yylval.subtok = 3; return COMPARISON; }

"<<" { yylval.subtok = 1; return SHIFT; }
">>" { yylval.subtok = 2; return SHIFT; }

":=" { return ASSIGN; }

Next come the punctuation tokens, using the standard trick to match all of the single-
character operators with the same pattern. MySQL has the usual range of comparison
operators, which are all treated as one COMPARISON operator with the token value telling
which one. We’ll see later that this doesn’t work perfectly, since the = token is used in
a few places where it’s not a comparison, but we can work around it.

Scanning Functions and Names
The last pieces to capture are functions and names:

 /* functions */

SUBSTR(ING)?/"(" { return FSUBSTRING; }
TRIM/"(" { return FTRIM; }
DATE_ADD/"(" { return FDATE_ADD; }
DATE_SUB/"(" { return FDATE_SUB; }

 /* check trailing context manually */
COUNT { int c = input(); unput(c);
 if(c == '(') return FCOUNT;
 yylval.strval = strdup(yytext);
 return NAME; }

 /* names */

[A-Za-z][A-Za-z0-9_]* { yylval.strval = strdup(yytext);
 return NAME; }

`[^`/\\.\n]+` { yylval.strval = strdup(yytext+1);
 yylval.strval[yyleng-2] = 0;
 return NAME; }

`[^`\n]*$ { yyerror("unterminated quoted name %s", yytext); }

92 | Chapter 4: Parsing SQL

Download at Boykma.Com

 /* user variables */
@[0-9a-z_.$]+ |
@\"[^"\n]+\" |
@`[^`\n]+` |
@'[^'\n]+' { yylval.strval = strdup(yytext+1); return USERVAR; }

@\"[^"\n]*$ |
@`[^`\n]*$ |
@'[^'\n]*$ { yyerror("unterminated quoted user variable %s", yytext); }

Standard SQL has a small fixed list of functions whose names are effectively key-
words, but MySQL adds its long list of functions and lets you define your own, so they
have to be recognized by context in the parser. MySQL usually considers them to be
function names only when they are immediately followed by an open parenthesis, so
the patterns use trailing context to check. However, MySQL provides an option to turn
off the open parenthesis test. The pattern for COUNT shows an alternative way to do
trailing context, by peeking at the next character with input() and unput(). This is less
elegant than a trailing context pattern but has the advantage that your code can decide
at runtime whether to do the test and what token to report back.

Names start with a letter and are composed of letters, digits, and underscores. The
pattern to match them has to follow all of the reserved words, so the reserved word
patterns take precedence. When a name is recognized, the scanner returns a copy of it.
Names can also be quoted in backticks, which allow arbitrary characters in names. The
scanner returns a quoted name the same way as an unquoted one, stripping off the
backticks. The next pattern catches a missing close backtick, by matching a string that
starts with a backtick, and runs to the end of the line.

User variables are a MySQL extension to standard SQL and are variables that are part
of a user’s session rather than part of a database. Their names start with an @ sign and
can use any of three quoting techniques to include arbitrary characters.

We also have some patterns to catch unclosed quoted user variable names. They end
with \n rather than $ to avoid a “dangerous trailing context” warning from flex; a $ at
the end of a pattern is equivalent to /\n, and multiple patterns with trailing context
that share an action turn out to be inefficient to handle. In this case, since we didn’t
have any other plans for the \n, we just make the pattern match the newline, but if that
were a problem, the alternative would just be to copy the action code separately for
each of the three patterns.

Comments and Miscellany
 /* comments */
#.* ;
"--"[\t].* ;

"/*" { oldstate = YY_START; BEGIN COMMENT; }
<COMMENT>"*/" { BEGIN oldstate; }
<COMMENT>.|\n ;

The Lexer | 93

Download at Boykma.Com

<COMMENT><<EOF>> { yyerror("unclosed comment"); }

 /* everything else */
[\t\n] /* whitespace */
. { yyerror("mystery character '%c'", *yytext); }

%%

The last few patterns skip whitespace, counting lines when the whitespace is a newline;
skip comments; and complain if any invalid character appears in the input. The C
comment patterns use the exclusive start state COMMENT to absorb the contents of the
comment. The <<EOF>> pattern catches an unclosed C-style comment that runs to the
end of the input file.

The Parser
The SQL parser, shown in Example 4-2, is larger than any of the parsers we’ve seen up
to this point, but we can understand it in pieces.

Example 4-2. MySQL subset parser

/*
 * Parser for mysql subset
 * $Header: /usr/home/johnl/flnb/RCS/ch04.tr,v 1.7 2009/05/19 18:28:27 johnl Exp $
 */
%{
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>

void yyerror(char *s, ...);
void emit(char *s, ...);
%}

%union {
 int intval;
 double floatval;
 char *strval;
 int subtok;
}

The parser starts out with the usual include statements and two function prototypes,
one for yyerror(), which is the same as in Chapter 3, and one for emit(), the routine
used to emit the RPN code, which takes a printf-style format string and arguments.

The %union has four members, all of which we met in the lexer: integer and float numeric
values, a pointer to copies of strings, and subtok for tokens that have subtypes. Since
intval and subtok are both integers, the parser would work just as well if we’d used a
single field for both, but separating them helps document the two different purposes,
numeric value and subtype, that the token value is used for.

94 | Chapter 4: Parsing SQL

Download at Boykma.Com

 /* names and literal values */

%token <strval> NAME
%token <strval> STRING
%token <intval> INTNUM
%token <intval> BOOL
%token <floatval> APPROXNUM

 /* user @abc names */

%token <strval> USERVAR

 /* operators and precedence levels */

%right ASSIGN
%left OR
%left XOR
%left ANDOP
%nonassoc IN IS LIKE REGEXP
%left NOT '!'
%left BETWEEN
%left <subtok> COMPARISON /* = <> < > <= >= <=> */
%left '|'
%left '&'
%left <subtok> SHIFT /* << >> */
%left '+' '-'
%left '*' '/' '%' MOD
%left '^'
%nonassoc UMINUS

Next come token declarations, matching the tokens used in the lexer. Like C, MySQL
has a dauntingly large number of precedence levels, but bison has no trouble handling
them if you can define them. The COMPARISON and SHIFT tokens are both declared here
to have subtok values where the lexer returns the particular operator or shift direction.

Next comes a long list of reserved words. Some of these are duplicates of tokens already
defined. Bison doesn’t object to duplicate token declarations, and it’s convenient to
have one master alphabetical list of all the reserved word tokens. The full list of tokens
is in the cross-reference in the Appendix, so here we just show a representative part of
the list. Note the special definition of EXISTS, which can correspond to EXISTS or NOT
EXISTS when the lexer reads the input.

%token ADD
%token ALL
 ...
%token ESCAPED
%token <subtok> EXISTS /* NOT EXISTS or EXISTS */
 ...
 /* functions with special syntax */
%token FSUBSTRING
%token FTRIM
%token FDATE_ADD FDATE_SUB
%token FCOUNT

The Parser | 95

Download at Boykma.Com

There are a few character tokens like ';' that aren’t operators and so have no prece-
dence that didn’t have to be defined.

We finish the definition section with a list of nonterminals that have values. Because
of the way we generate the RPN code in the parser, these values are either bitmasks
where a nonterminal matches a set of options or else a count where the nonterminal
matches a list of items of variable length.

%type <intval> select_opts select_expr_list
%type <intval> val_list opt_val_list case_list
%type <intval> groupby_list opt_with_rollup opt_asc_desc
%type <intval> table_references opt_inner_cross opt_outer
%type <intval> left_or_right opt_left_or_right_outer column_list
%type <intval> index_list opt_for_join

%type <intval> delete_opts delete_list
%type <intval> insert_opts insert_vals insert_vals_list
%type <intval> insert_asgn_list opt_if_not_exists update_opts update_asgn_list
%type <intval> opt_temporary opt_length opt_binary opt_uz enum_list
%type <intval> column_atts data_type opt_ignore_replace create_col_list

%start stmt_list

%%

The Top-Level Parsing Rules
stmt_list: stmt ';'
 | stmt_list stmt ';'
 ;

The top level is just a list of statements with each terminated by a semicolon, roughly
the same as what the mysql command-line tool accepts. Each different statement will
define an alternative, or several alternatives, for stmt.

SQL Expressions
Before we define the syntax for specific statements, we’ll define the syntax of MySQL
expressions, which are an extended version of the expressions familiar from languages
like C and Fortran.

 /**** expressions ****/

expr: NAME { emit("NAME %s", $1); free($1); }
 | NAME '.' NAME { emit("FIELDNAME %s.%s", $1, $3); free($1); free($3); }
 | USERVAR { emit("USERVAR %s", $1); free($1); }
 | STRING { emit("STRING %s", $1); free($1); }
 | INTNUM { emit("NUMBER %d", $1); }
 | APPROXNUM { emit("FLOAT %g", $1); }
 | BOOL { emit("BOOL %d", $1); }
 ;

96 | Chapter 4: Parsing SQL

Download at Boykma.Com

The simplest expressions are variable names and constants. Since a name in a SQL
expression is usually a column name in a table, a name can also be qualified as
table.name if there are several tables in the statement that use the same field name,
which is quite common when the fields are used with common values to link tables
together. Other simple expressions are user variables starting with an @ sign (dealt with
in the lexer and not visible here) and constant strings, fixed and floating numbers, and
boolean values. In each case, the code just emits an RPN statement for the item. For
the items returned from the lexer as strings, it then frees the string created by the lexer
to avoid storage leaks. In a more realistic parser, names would probably be entered into
a symbol table rather than passed around as strings.

expr: expr '+' expr { emit("ADD"); }
 | expr '-' expr { emit("SUB"); }
 | expr '*' expr { emit("MUL"); }
 | expr '/' expr { emit("DIV"); }
 | expr '%' expr { emit("MOD"); }
 | expr MOD expr { emit("MOD"); }
 | '-' expr %prec UMINUS { emit("NEG"); }
 | expr ANDOP expr { emit("AND"); }
 | expr OR expr { emit("OR"); }
 | expr XOR expr { emit("XOR"); }
 | expr '|' expr { emit("BITOR"); }
 | expr '&' expr { emit("BITAND"); }
 | expr '^' expr { emit("BITXOR"); }
 | expr SHIFT expr { emit("SHIFT %s", $2==1?"left":"right"); }
 | NOT expr { emit("NOT"); }
 | '!' expr { emit("NOT"); }
 | expr COMPARISON expr { emit("CMP %d", $2); }

 /* recursive selects and comparisons thereto */
 | expr COMPARISON '(' select_stmt ')' { emit("CMPSELECT %d", $2); }
 | expr COMPARISON ANY '(' select_stmt ')' { emit("CMPANYSELECT %d", $2); }
 | expr COMPARISON SOME '(' select_stmt ')' { emit("CMPANYSELECT %d", $2); }
 | expr COMPARISON ALL '(' select_stmt ')' { emit("CMPALLSELECT %d", $2); }
 ;

expr: expr IS NULLX { emit("ISNULL"); }
 | expr IS NOT NULLX { emit("ISNULL"); emit("NOT"); }
 | expr IS BOOL { emit("ISBOOL %d", $3); }
 | expr IS NOT BOOL { emit("ISBOOL %d", $4); emit("NOT"); }

 | USERVAR ASSIGN expr { emit("ASSIGN @%s", $1); free($1); }
 ;

expr: expr BETWEEN expr AND expr %prec BETWEEN { emit("BETWEEN"); }
 ;

Unary and binary expressions are straightforward and just emit the code for the ap-
propriate operator. Comparisons also emit a subcode to tell what kind of comparison
to do. (The subcodes are bit-encoded, where 1 means less than, 2 means greater than,
and 4 means equal.)

The Parser | 97

Download at Boykma.Com

SQL permits recursive SELECT statements where an internal SELECT returns a list of values
that an external condition checks. If the internal SELECT can return multiple values, it
can check whether ANY or ALL/SOME of the comparisons succeed. Although this can
produce very complex statements, parsing it is simple since it just refers to
select_stmt, defined later, for the internal SELECT. The RPN code emitted is the code
for the expression to compare, then the code for the SELECT, and then an operator
CMPSELECT, CMPANYSELECT, or CMPALLSELECT to say that this is a comparison of the pre-
ceding expression and SELECT.

SQL has some postfix operators including IS NULL, IS TRUE, and IS FALSE, as well as
negated versions of them such as IS NOT FALSE. (Remember that BOOL is a boolean
constant, TRUE, FALSE, or UNKNOWN.) Rather than coming up with RPN codes for the
negated versions, we just emit a NOT operator to reverse the result of the test.

Next comes a MySQL extension to standard SQL: Internal assignments to user varia-
bles. These use a := assignment operator, returned from the lexer as an ASSIGN token,
to avoid ambiguity with the equality comparison operator.

The syntactically unusual BETWEEN ... AND operator tests a value against two limits. It
needed a lexical hack, described earlier, because of the ambiguity between the AND in
this operator and the logical operation AND. (Like all hacks, this one isn’t totally satis-
factory, but it will do.) Since bison’s precedence rules normally use the precedence of
the rightmost token in a rule, we need a %prec to tell it to use BETWEEN’s precedence.

val_list: expr { $$ = 1; }
 | expr ',' val_list { $$ = 1 + $3; }
 ;

opt_val_list: /* nil */ { $$ = 0 }
 | val_list
 ;

expr: expr IN '(' val_list ')' { emit("ISIN %d", $4); }
 | expr NOT IN '(' val_list ')' { emit("ISIN %d", $5); emit("NOT"); }
 | expr IN '(' select_stmt ')' { emit("CMPANYSELECT 4"); }
 | expr NOT IN '(' select_stmt ')' { emit("CMPALLSELECT 3"); }
 | EXISTS '(' select_stmt ')' { emit("EXISTSSELECT"); if($1)emit("NOT"); }
 ;

The next set of operators uses variable-length lists of expressions (called lists of val-
ues or val_lists in the MySQL manual). In Chapter 3 we built trees to manage multiple
expressions, but RPN makes the job considerably easier. Since an RPN interpreter
evaluates each RPN value onto its internal stack, an operator that takes multiple values
needs only to know how many values to pop off the stack. In our RPN code, such
operators include an expression count.

This means the bison rules to parse the variable-length lists need only maintain a count
of how many expressions they’ve parsed, which we keep as the value of the list’s LHS
symbol, in this case val_list. A single element list has length 1, and at each stage, a
multi-element list has one more element than its sublist. There are some constructs

98 | Chapter 4: Parsing SQL

Download at Boykma.Com

where the list of values is optional, so an opt_val_list is either empty, with a count
value of zero, or a val_list with a count value of whatever the val_list had. (Remember
the default action $$ = $1 for rules with no explicit action.)

Once we have the lists, we can parse the IN and NOT IN operators that test whether an
expression is or isn’t in a list of values. Note that the emitted code includes the count
of values. SQL also has a variant form where the values come from a SELECT statement.
For these statements, IN and NOT IN are equivalent to = ANY and != ALL, so we emit the
same code.

Functions

SQL has a limited set of functions that MySQL greatly extends. Parsing normal function
calls is very simple, since we can use the opt_val_list rule and the RPN is CALL with
the number of arguments, but the parsing is made much more complex by several
functions that have their own quirky optional syntax.

 /* regular functions */
expr: NAME '(' opt_val_list ')' { emit("CALL %d %s", $3, $1); free($1); }
 ;

 /* functions with special syntax */
expr: FCOUNT '(' '*' ')' { emit("COUNTALL") }
 | FCOUNT '(' expr ')' { emit(" CALL 1 COUNT"); }

expr: FSUBSTRING '(' val_list ')' { emit("CALL %d SUBSTR", $3); }
 | FSUBSTRING '(' expr FROM expr ')' { emit("CALL 2 SUBSTR"); }
 | FSUBSTRING '(' expr FROM expr FOR expr ')' { emit("CALL 3 SUBSTR"); }

 | FTRIM '(' val_list ')' { emit("CALL %d TRIM", $3); }
 | FTRIM '(' trim_ltb expr FROM val_list ')' { emit("CALL 3 TRIM"); }
 ;

trim_ltb: LEADING { emit("NUMBER 1"); }
 | TRAILING { emit("NUMBER 2"); }
 | BOTH { emit("NUMBER 3"); }
 ;

expr: FDATE_ADD '(' expr ',' interval_exp ')' { emit("CALL 3 DATE_ADD"); }
 | FDATE_SUB '(' expr ',' interval_exp ')' { emit("CALL 3 DATE_SUB"); }
 ;

interval_exp: INTERVAL expr DAY_HOUR { emit("NUMBER 1"); }
 | INTERVAL expr DAY_MICROSECOND { emit("NUMBER 2"); }
 | INTERVAL expr DAY_MINUTE { emit("NUMBER 3"); }
 | INTERVAL expr DAY_SECOND { emit("NUMBER 4"); }
 | INTERVAL expr YEAR_MONTH { emit("NUMBER 5"); }
 | INTERVAL expr YEAR { emit("NUMBER 6"); }
 | INTERVAL expr HOUR_MICROSECOND { emit("NUMBER 7"); }
 | INTERVAL expr HOUR_MINUTE { emit("NUMBER 8"); }
 | INTERVAL expr HOUR_SECOND { emit("NUMBER 9"); }
 ;

The Parser | 99

Download at Boykma.Com

We handle five functions with special syntax here, COUNT, SUBSTRING, TRIM, DATE_ADD,
and DATE_SUB. COUNT has a special form, COUNT(*), used to efficiently count the number
of records returned by a SELECT statement, as well as a normal form that counts the
number of different values of an expression. We have one rule for the special form,
which emits a special COUNTALL operator, and a second rule for the regular form, which
emits a regular function call. SUBSTRING is a normal substring operator taking the orig-
inal string, where to start, and how many characters to take. It can either use the regular
call syntax or use reserved words FROM and FOR to delimit the arguments. There’s a rule
for each form, all generating similar code since it’s the same two or three arguments.
TRIM similarly can use normal syntax or special syntax like TRIM(LEADING 'x' FROM a).
Again, we parse each form and generate rules. The keywords LEADING, TRAILING, and
BOTH turn into the integer values 1 through 3 passed as the first argument in a three-
argument form. DATE_ADD and DATE_SUB add or subtract a scaled number of time periods
to a date. The special syntax accepts a long list of scaling types, which again turn into
integers passed to the functions.

Bison really shines when handling this kind of complex syntax for two reasons: one is
that you can generally just write down rules like these as you need and they’ll work,
but more important, since bison will diagnose any ambiguous grammar, you know that
if it doesn’t report conflicts, you haven’t accidentally broken some other part of the
parser.

Other expressions

We wrap up the expression grammar with a grab bag of special cases.

expr: CASE expr case_list END { emit("CASEVAL %d 0", $3); }
 | CASE expr case_list ELSE expr END { emit("CASEVAL %d 1", $3); }
 | CASE case_list END { emit("CASE %d 0", $2); }
 | CASE case_list ELSE expr END { emit("CASE %d 1", $2); }
 ;

case_list: WHEN expr THEN expr { $$ = 1; }
 | case_list WHEN expr THEN expr { $$ = $1+1; }
 ;

expr: expr LIKE expr { emit("LIKE"); }
 | expr NOT LIKE expr { emit("LIKE"); emit("NOT"); }
 ;

expr: expr REGEXP expr { emit("REGEXP"); }
 | expr NOT REGEXP expr { emit("REGEXP"); emit("NOT"); }
 ;

expr: CURRENT_TIMESTAMP { emit("NOW") };
 | CURRENT_DATE { emit("NOW") };
 | CURRENT_TIME { emit("NOW") };
 ;

100 | Chapter 4: Parsing SQL

Download at Boykma.Com

expr: BINARY expr %prec UMINUS { emit("STRTOBIN"); }
 ;

The CASE statement comes in two forms. In the first, CASE is followed by a value that is
compared against a list of test values with an expression value for each test, and an
optional ELSE default, as in CASE a WHEN 100 THEN 1 WHEN 200 THEN 2 ELSE 3 END. The
other is just a list of conditional expressions, as in CASE WHEN a=100 THEN 1 WHEN a=200
THEN 2 END. We have a rule case_list that builds up a list of WHEN/THEN expression pairs
and then uses it in four variants of CASE, each of the two versions with and without
ELSE. The RPN is CASEVAL or CASE for the versions with or without an initial value, with
a count of WHEN/THEN pairs and 1 or 0 if there’s an ELSE value. The LIKE and REGEXP
operators do forms of pattern matching. They’re basically binary operators except that
they permit a preceding NOT to reverse the sense of the test. Finally, there are three
versions of the keyword for the current time, as well as a unary BINARY operator that
coerces an expression to be treated as binary rather than text data.

Select Statements
By far the most complex statement in SQL is SELECT, which retrieves data from SQL
tables and summaries and manipulates it. We deal with it first because it will use several
subrules that we can reuse when parsing other statements.

 /* statements: select statement */

stmt: select_stmt { emit("STMT"); }
 ;

select_stmt: SELECT select_opts select_expr_list simple select with no tables
 { emit("SELECTNODATA %d %d", $2, $3); } ;

 | SELECT select_opts select_expr_list select with tables
 FROM table_references
 opt_where opt_groupby opt_having opt_orderby opt_limit
 opt_into_list { emit("SELECT %d %d %d", $2, $3, $5); } ;
;

The first rule says that a select_stmt is a kind of statement, and it emits an RPN STMT
as a delimiter between statements. The syntax of SELECT lists the expressions that SQL
needs to calculate for each record (aka tuple) it retrieves, lists an optional (but usual)
FROM with the tables containing the data for the expressions, and lists optional qualifiers
such as WHERE, GROUP BY, and HAVING that limit, combine, and sort the records retrieved.
Each qualifier has its own rules.

opt_where: /* nil */
 | WHERE expr { emit("WHERE"); };

opt_groupby: /* nil */
 | GROUP BY groupby_list opt_with_rollup
 { emit("GROUPBYLIST %d %d", $3, $4); }
;

The Parser | 101

Download at Boykma.Com

groupby_list: expr opt_asc_desc
 { emit("GROUPBY %d", $2); $$ = 1; }
 | groupby_list ',' expr opt_asc_desc
 { emit("GROUPBY %d", $4); $$ = $1 + 1; }
 ;

opt_asc_desc: /* nil */ { $$ = 0; }
 | ASC { $$ = 0; }
 | DESC { $$ = 1; }
 ;

opt_with_rollup: /* nil */ { $$ = 0; }
 | WITH ROLLUP { $$ = 1; }
 ;

opt_having: /* nil */
 | HAVING expr { emit("HAVING"); };

opt_orderby: /* nil */
 | ORDER BY groupby_list { emit("ORDERBY %d", $3); }
 ;

opt_limit: /* nil */ | LIMIT expr { emit("LIMIT 1"); }
 | LIMIT expr ',' expr { emit("LIMIT 2"); }
 ;

opt_into_list: /* nil */
 | INTO column_list { emit("INTO %d", $2); }
 ;

column_list: NAME { emit("COLUMN %s", $1); free($1); $$ = 1; }
 | column_list ',' NAME { emit("COLUMN %s", $3); free($3); $$ = $1 + 1; }
 ;

Some of the options, WHERE, GROUPBY, and HAVING, take a fixed number of expressions,
while LIMIT takes either one or two expressions. These each have straightforward rules
to match the option and its expression(s), and they emit an RPN operator to say what
to do with the expressions.

GROUP BY and ORDER BY take a list of expressions, usually column names, each optionally
followed by ASC or DESC to set the sort order. The groupby_list rule makes a counted
list of expressions, emitting a GROUPBY operator with an operand for the sort order. The
GROUP BY and ORDER BY rules then emit GROUPBYLIST and ORDERBY operators with the count
and, for GROUP BY, a flag to say whether to use the WITH ROLLUP option, which adds some
extra summary fields to the result.

The INTO operator takes a plain list of names, which we call a column_list, that is a list
of field names into which to store the selected data. INTO isn’t used very often, but we’ll
reuse column_list several other places later where the syntax has a list of column names.

Select options and table references

Now we handle the initial options and the main list of expressions in a SELECT.

102 | Chapter 4: Parsing SQL

Download at Boykma.Com

select_opts: { $$ = 0; }
| select_opts ALL
 { if($1 & 01) yyerror("duplicate ALL option"); $$ = $1 | 01; }
| select_opts DISTINCT
 { if($1 & 02) yyerror("duplicate DISTINCT option"); $$ = $1 | 02; }
| select_opts DISTINCTROW
 { if($1 & 04) yyerror("duplicate DISTINCTROW option"); $$ = $1 | 04; }
| select_opts HIGH_PRIORITY
 { if($1 & 010) yyerror("duplicate HIGH_PRIORITY option"); $$ = $1 | 010; }
| select_opts STRAIGHT_JOIN
 { if($1 & 020) yyerror("duplicate STRAIGHT_JOIN option"); $$ = $1 | 020; }
| select_opts SQL_SMALL_RESULT
 { if($1 & 040) yyerror("duplicate SQL_SMALL_RESULT option"); $$ = $1 | 040; }
| select_opts SQL_BIG_RESULT
 { if($1 & 0100) yyerror("duplicate SQL_BIG_RESULT option"); $$ = $1 | 0100; }
| select_opts SQL_CALC_FOUND_ROWS
 { if($1 & 0200) yyerror("duplicate SQL_CALC_FOUND_ROWS option"); $$ =
 $1 | 0200; }
 ;

select_expr_list: select_expr { $$ = 1; }
 | select_expr_list ',' select_expr {$$ = $1 + 1; }
 | '*' { emit("SELECTALL"); $$ = 1; }
 ;

select_expr: expr opt_as_alias ;

opt_as_alias: AS NAME { emit ("ALIAS %s", $2); free($2); }
 | NAME { emit ("ALIAS %s", $1); free($1); }
 | /* nil */
 ;

The options are flags that affect the way that a SELECT is handled. The rules about what
options are compatible with each other are too complex to encode into the grammar,
so we just accept any set of options and build up a bitmask of them, which also lets us
diagnose duplicate options. (When options can occur in any order, there’s no good
way to prevent duplicates in the grammar, and it’s generally easy to detect them yourself
as we do here.)

The SELECT expression list is a comma-separated list of expressions, each optionally
followed by an AS clause to give the expression a name to use to refer to it elsewhere in
the SELECT statement. We emit an ALIAS operator in the RPN. As a special case, * means
all of the fields in the source records, for which we emit SELECTALL.

SELECT table references

The most complex and powerful part of SELECT, and the most powerful part of SQL, is
the way it can refer to multiple tables. In a SELECT, you can tell it to create conceptual
joined tables built from data stored in many actual tables, either by explicit joins or by
recursive SELECT statements. Since tables can be rather large, there are also ways to give
it hints about how to do the joining efficiently.

The Parser | 103

Download at Boykma.Com

table_references: table_reference { $$ = 1; }
 | table_references ',' table_reference { $$ = $1 + 1; }
 ;

table_reference: table_factor
 | join_table
;

table_factor:
 NAME opt_as_alias index_hint { emit("TABLE %s", $1); free($1); }
 | NAME '.' NAME opt_as_alias index_hint { emit("TABLE %s.%s", $1, $3);
 free($1); free($3); }
 | table_subquery opt_as NAME { emit("SUBQUERYAS %s", $3); free($3); }
 | '(' table_references ')' { emit("TABLEREFERENCES %d", $2); }
 ;

opt_as: AS
 | /* nil */
 ;

join_table:
 table_reference opt_inner_cross JOIN table_factor opt_join_condition
 { emit("JOIN %d", 100+$2); }
 | table_reference STRAIGHT_JOIN table_factor
 { emit("JOIN %d", 200); }
 | table_reference STRAIGHT_JOIN table_factor ON expr
 { emit("JOIN %d", 200); }
 | table_reference left_or_right opt_outer JOIN table_factor join_condition
 { emit("JOIN %d", 300+$2+$3); }
 | table_reference NATURAL opt_left_or_right_outer JOIN table_factor
 { emit("JOIN %d", 400+$3); }
 ;

opt_inner_cross: /* nil */ { $$ = 0; }
 | INNER { $$ = 1; }
 | CROSS { $$ = 2; }
;

opt_outer: /* nil */ { $$ = 0; }
 | OUTER {$$ = 4; }
 ;

left_or_right: LEFT { $$ = 1; }
 | RIGHT { $$ = 2; }
 ;

opt_left_or_right_outer: LEFT opt_outer { $$ = 1 + $2; }
 | RIGHT opt_outer { $$ = 2 + $2; }
 | /* nil */ { $$ = 0; }
 ;

opt_join_condition: /* nil */
 | join_condition ;

join_condition:

104 | Chapter 4: Parsing SQL

Download at Boykma.Com

 ON expr { emit("ONEXPR"); }
 | USING '(' column_list ')' { emit("USING %d", $3); }
 ;

index_hint:
 USE KEY opt_for_join '(' index_list ')'
 { emit("INDEXHINT %d %d", $5, 10+$3); }
 | IGNORE KEY opt_for_join '(' index_list ')'
 { emit("INDEXHINT %d %d", $5, 20+$3); }
 | FORCE KEY opt_for_join '(' index_list ')'
 { emit("INDEXHINT %d %d", $5, 30+$3); }
 | /* nil */
 ;

opt_for_join: FOR JOIN { $$ = 1; }
 | /* nil */ { $$ = 0; }
 ;

index_list: NAME { emit("INDEX %s", $1); free($1); $$ = 1; }
 | index_list ',' NAME { emit("INDEX %s", $3); free($3); $$ = $1 + 1; }
 ;

table_subquery: '(' select_stmt ')' { emit("SUBQUERY"); }
 ;

Although the grammar for the table sublanguage is long, it’s not all that complex,
consisting mostly of lists of items and a lot of optional clauses. Each table_reference
can be a table_factor (which is a plain table, a nested SELECT, or a parenthesized list)
or else a join_table, an explicit join. A plain table reference is the name of the table,
with or without the name of the database that contains it; an optional AS clause to give
an alias name (a table can usefully appear more than once in the same SELECT, and this
makes it possible to tell which instance an expression refers to); and an optional hint
about which indexes to use, described in a moment.

A nested SELECT is a SELECT statement in parentheses, which must have a name assigned,
although the AS before the name is optional. A table_factor can also be a parenthesized
list of table_references, which can be useful when creating joins.

Each table_factor can also take an index hint. A SQL table can have indexes on any
combination of fields, which makes it faster to do searches based on those fields. Each
index has a name, typically something like foo_index for a field foo. Normally MySQL
uses the appropriate indexes automatically, but you can also override its choice of
indexes by USE KEY, FORCE KEY, or IGNORE KEY.

A join specifies the way to combine two groups of tables. Joins come in a variety of
flavors that change the order in which the table are matched up, specify what to do
with records in one group that don’t match any records in the other group, and specify
other details. Every join also explicitly or implicitly specifies the fields to use to match
up the tables, in a variety of syntaxes, for example:

 SELECT * FROM a JOIN b on a.foo=b.bar
 SELECT * FROM a JOIN b USING (foo) a.foo=b.foo

The Parser | 105

Download at Boykma.Com

In a NATURAL join, the join matches on fields with the same name, and in a regular join,
if there are no fields listed, it creates a cross-product, joining every record in the first
group with every record in the second group. In this latter case, the result is usually
whittled down by a WHERE or HAVING clause. For all the various sorts of joins, we emit a
JOIN operator with subfields describing the exact kind of join.

Note the separate rules table_factor and table_reference. They’re separate to set the
associativity of JOIN operators and resolve the ambiguity in an expression like a JOIN
b JOIN c, which means (a JOIN b) JOIN c rather than a JOIN (b JOIN c). In the
join_table rule, there’s a table_reference on the left side of each join and
table_factor on the right, making the syntax left associative. Since a table_factor can
be a parenthesized table_reference, you can use parentheses if that’s not what you
want. In this case, we could have made everything a table_reference and used prece-
dence to resolve the ambiguity, but this syntax comes directly from the SQL standard,
and there seemed to be no reason to change it.

Delete Statement
Once we have the SELECT statement under control, the other data manipulation state-
ments are easy to parse. DELETE deletes records from a table, with the records to delete
chosen using a WHERE clause identical to the WHERE clause in a SELECT or chosen from a
group of tables also specified the same as in a SELECT.

 /* statements: delete statement */

stmt: delete_stmt { emit("STMT"); }
 ;

 /* single table delete */
delete_stmt: DELETE delete_opts FROM NAME
 opt_where opt_orderby opt_limit
 { emit("DELETEONE %d %s", $2, $4); free($4); }
;

delete_opts: delete_opts LOW_PRIORITY { $$ = $1 + 01; }
 | delete_opts QUICK { $$ = $1 + 02; }
 | delete_opts IGNORE { $$ = $1 + 04; }
 | /* nil */ { $$ = 0; }
 ;

The DELETE statement reuses several rules we wrote for SELECT: opt_where for an optional
WHERE clause, opt_orderby for an optional ORDER BY clause, and opt_limit for an optional
LIMIT clause. Since the rules for each of those clauses emits its own RPN, we only have
to write rules for some keywords specific to DELETE, QUICK, and IGNORE, and for the
DELETE statement itself.

 /* multitable delete, first version */
delete_stmt: DELETE delete_opts
 delete_list
 FROM table_references opt_where

106 | Chapter 4: Parsing SQL

Download at Boykma.Com

 { emit("DELETEMULTI %d %d %d", $2, $3, $5); }

delete_list: NAME opt_dot_star { emit("TABLE %s", $1); free($1); $$ = 1; }
 | delete_list ',' NAME opt_dot_star
 { emit("TABLE %s", $3); free($3); $$ = $1 + 1; }
 ;

opt_dot_star: /* nil */ | '.' '*' ;

 /* multitable delete, second version */
delete_stmt: DELETE delete_opts
 FROM delete_list
 USING table_references opt_where
 { emit("DELETEMULTI %d %d %d", $2, $4, $6); }
;

There are two different syntaxes for multitable DELETEs, to be compatible with
various other implementations of SQL. One lists the tables followed by FROM and the
table_references; the other says FROM, the list of tables, USING, and the
table_references. Bison deals easily with these variants, and we emit the same RPN
for both. The delete_list has a little optional “syntactic sugar,” letting you specify the
table from which records are to be deleted as name.*, as well as plain name, to remind
readers that all of the fields in each record are deleted.

Insert and Replace Statements
The INSERT and REPLACE statements add records to a table. The only difference between
them is that if the primary key fields in a new record have the same values as an existing
record, INSERT fails with an error unless there’s an ON DUPLICATE KEY clause, while
REPLACE replaces the existing record. INSERT, like DELETE, has two equivalent variant
forms to insert new data, and it has a third form that inserts records created by a SELECT.

 INSERT INTO a(b,c) values (1,2),(3,DEFAULT)

 /* statements: insert statement */

stmt: insert_stmt { emit("STMT"); }
 ;

insert_stmt: INSERT insert_opts opt_into NAME
 opt_col_names
 VALUES insert_vals_list
 opt_ondupupdate { emit("INSERTVALS %d %d %s", $2, $7, $4); free($4) }
 ;

opt_ondupupdate: /* nil */
 | ONDUPLICATE KEY UPDATE insert_asgn_list { emit("DUPUPDATE %d", $4); }
 ;

insert_opts: /* nil */ { $$ = 0; }
 | insert_opts LOW_PRIORITY { $$ = $1 | 01 ; }
 | insert_opts DELAYED { $$ = $1 | 02 ; }

The Parser | 107

Download at Boykma.Com

 | insert_opts HIGH_PRIORITY { $$ = $1 | 04 ; }
 | insert_opts IGNORE { $$ = $1 | 010 ; }
 ;

opt_into: INTO | /* nil */
 ;

opt_col_names: /* nil */
 | '(' column_list ')' { emit("INSERTCOLS %d", $2); }
 ;

insert_vals_list: '(' insert_vals ')' { emit("VALUES %d", $2); $$ = 1; }
 | insert_vals_list ',' '(' insert_vals ')' { emit("VALUES %d", $4); $$ = $1 + 1; }

insert_vals:
 expr { $$ = 1; }
 | DEFAULT { emit("DEFAULT"); $$ = 1; }
 | insert_vals ',' expr { $$ = $1 + 1; }
 | insert_vals ',' DEFAULT { emit("DEFAULT"); $$ = $1 + 1; }
 ;

The first form specifies the name of the table and the list of fields to be provided (all of
them if not specified), then specifies VALUES, and finally specifies lists of values. This
form can insert multiple records, so the rule insert_vals matches the fields for one
record enclosed in parentheses and insert_vals_list matches multiple comma-sepa-
rated sets of fields. Each field value can be an expression or the keyword DEFAULT. There
are a few optional keywords to control the details of the insert.

The opt_ondupupdate rule handles the ON DUPLICATE clause, which gives a list of fields
to change if an inserted record would have had a duplicate key. Since the syntax is SET
field=value and = is scanned as a COMPARISON operator, we accept COMPARISON and check
in our code to be sure that it’s an equal sign and not something else.§ Note that
ONDUPLICATE is one token; in the lexer we treat the two words as one token to avoid
ambiguity with ON clauses in nested SELECTs.

 INSERT INTO a SET b=1, c=2

insert_stmt: INSERT insert_opts opt_into NAME
 SET insert_asgn_list
 opt_ondupupdate
 { emit("INSERTASGN %d %d %s", $2, $6, $4); free($4) }
 ;

insert_asgn_list:
 NAME COMPARISON expr
 { if ($2 != 4) { yyerror("bad insert assignment to %s", $1); YYERROR; }
 emit("ASSIGN %s", $1); free($1); $$ = 1; }
 | NAME COMPARISON DEFAULT
 { if ($2 != 4) { yyerror("bad insert assignment to %s", $1); YYERROR; }

§ This could fairly be considered a kludge, but the alternative would be to treat = separately from the other
comparison operators and add an extra rule every place a comparison can occur, which would result in
more code.

108 | Chapter 4: Parsing SQL

Download at Boykma.Com

 emit("DEFAULT"); emit("ASSIGN %s", $1); free($1); $$ = 1; }
 | insert_asgn_list ',' NAME COMPARISON expr
 { if ($4 != 4) { yyerror("bad insert assignment to %s", $1); YYERROR; }
 emit("ASSIGN %s", $3); free($3); $$ = $1 + 1; }
 | insert_asgn_list ',' NAME COMPARISON DEFAULT
 { if ($4 != 4) { yyerror("bad insert assignment to %s", $1); YYERROR; }
 emit("DEFAULT"); emit("ASSIGN %s", $3); free($3); $$ = $1 + 1; }
 ;

The second form uses an assignment syntax similar to the one for ON DUPLICATE. We
have to check that the COMPARISON is really an =. If not, we produce an error message
by calling yyerror(), and then we tell the parser to start error recovery with YYERROR.
(In this version of the parser there’s no error recovery, but see Chapter 8.) This form
uses same optional ON DUPLICATE syntax at the end of the statement, so we use the
same rule.

 INSERT into a(b,c) SELECT x,y FROM z where x < 12
insert_stmt: INSERT insert_opts opt_into NAME opt_col_names
 select_stmt
 opt_ondupupdate { emit("INSERTSELECT %d %s", $2, $4); free($4); }
 ;

The third form of INSERT uses data from a SELECT statement to create new records. All
of the pieces of this statement are the same as syntax we’ve seen before, so we write
only the one rule and reuse subrules for the pieces.

Replace statement

The syntax of the REPLACE statement is just like INSERT, so the rules for it are the same
too, changing INSERT to REPLACE and renaming the top-level rules.

 /** replace just like insert **/
stmt: replace_stmt { emit("STMT"); }
 ;

replace_stmt: REPLACE insert_opts opt_into NAME
 opt_col_names
 VALUES insert_vals_list
 opt_ondupupdate { emit("REPLACEVALS %d %d %s", $2, $7, $4); free($4) }
 ;

replace_stmt: REPLACE insert_opts opt_into NAME
 SET insert_asgn_list
 opt_ondupupdate
 { emit("REPLACEASGN %d %d %s", $2, $6, $4); free($4) }
 ;

replace_stmt: REPLACE insert_opts opt_into NAME opt_col_names
 select_stmt
 opt_ondupupdate { emit("REPLACESELECT %d %s", $2, $4); free($4); }
 ;

The Parser | 109

Download at Boykma.Com

Update Statement
The UPDATE statement changes fields in existing records. Again, its syntax lets us reuse
rules from previous statements.

/** update **/
stmt: update_stmt { emit("STMT"); }
 ;

update_stmt: UPDATE update_opts table_references
 SET update_asgn_list
 opt_where
 opt_orderby
opt_limit { emit("UPDATE %d %d %d", $2, $3, $5); }
;

update_opts: /* nil */ { $$ = 0; }
 | insert_opts LOW_PRIORITY { $$ = $1 | 01 ; }
 | insert_opts IGNORE { $$ = $1 | 010 ; }
 ;

update_asgn_list:
 NAME COMPARISON expr
 { if ($2 != 4) { yyerror("bad update assignment to %s", $1); YYERROR; }
 emit("ASSIGN %s", $1); free($1); $$ = 1; }
 | NAME '.' NAME COMPARISON expr
 { if ($4 != 4) { yyerror("bad update assignment to %s", $1); YYERROR; }
 emit("ASSIGN %s.%s", $1, $3); free($1); free($3); $$ = 1; }
 | update_asgn_list ',' NAME COMPARISON expr
 { if ($4 != 4) { yyerror("bad update assignment to %s", $3); YYERROR; }
 emit("ASSIGN %s.%s", $3); free($3); $$ = $1 + 1; }
 | update_asgn_list ',' NAME '.' NAME COMPARISON expr
 { if ($6 != 4) { yyerror("bad update assignment to %s.$s", $3, $5);
 YYERROR; }
 emit("ASSIGN %s.%s", $3, $5); free($3); free($5); $$ = 1; }
 ;

UPDATE has its own set of options in the update_opts rule. The list of assignments after
SET is similar to the one in INSERT, but it allows qualified table names since you can
update more than one table at a time, and it doesn’t have the default option in
INSERT, so we have a similar but different update_asgn_list. INSERT uses the same
opt_where and opt_orderby to limit and sort the records updated.

This ends the list of data manipulation statements in our SQL subset. MySQL has
several more not covered here, but their syntax is straightforward to parse.

Create Database
Now we’ll handle two of the many data definition statements that create and modify
the structure of databases and tables.

 /** create database **/

110 | Chapter 4: Parsing SQL

Download at Boykma.Com

stmt: create_database_stmt { emit("STMT"); }
 ;

create_database_stmt:
 CREATE DATABASE opt_if_not_exists NAME
 { emit("CREATEDATABASE %d %s", $3, $4); free($4); }
 | CREATE SCHEMA opt_if_not_exists NAME
 { emit("CREATEDATABASE %d %s", $3, $4); free($4); }
 ;

opt_if_not_exists: /* nil */ { $$ = 0; }
 | IF EXISTS
 { if(!$2) { yyerror("IF EXISTS doesn't exist"); YYERROR; }
 $$ = $2; /* NOT EXISTS hack */ }
 ;

CREATE DATABASE, or the equivalent CREATE SCHEMA statement, makes a new database in
which you can then create tables. It has one optional clause, IF NOT EXISTS, to prevent
an error message if the database already exists. Recall that we did a lexical hack to treat
IF NOT EXISTS and IF EXISTS as the same token in expressions. In this case, only IF NOT
EXISTS is valid, so we test in the action code and complain and tell the parser it’s a
syntax error if it’s the wrong one.

Create Table
The CREATE TABLE statement rivals SELECT in its length and number of options, but its
syntax is much simpler since nearly all of the syntax is just declaring the type and
attribute of each column in the table.

We start with six versions of create_table_statement. There are three pairs that differ
only in NAME or NAME.NAME for the name of the table. The first pair is the normal version
with an explicit list of columns in create_col_list. The other two create and populate
a table from a SELECT statement, with one including a list of column names and the
other defaulting to the column names from the SELECT.

 /** create table **/
stmt: create_table_stmt { emit("STMT"); }
 ;

create_table_stmt: CREATE opt_temporary TABLE opt_if_not_exists NAME
 '(' create_col_list ')' { emit("CREATE %d %d %d %s", $2, $4, $7, $5); free($5); }
 ;

create_table_stmt: CREATE opt_temporary TABLE opt_if_not_exists NAME '.' NAME
 '(' create_col_list ')' { emit("CREATE %d %d %d %s.%s", $2, $4, $9, $5, $7);
 free($5); free($7); }
 ;

create_table_stmt: CREATE opt_temporary TABLE opt_if_not_exists NAME
 '(' create_col_list ')'
create_select_statement { emit("CREATESELECT %d %d %d %s", $2, $4, $7, $5); free($5); }
 ;

The Parser | 111

Download at Boykma.Com

create_table_stmt: CREATE opt_temporary TABLE opt_if_not_exists NAME
 create_select_statement { emit("CREATESELECT %d %d 0 %s", $2, $4, $5); free($5); }
 ;

create_table_stmt: CREATE opt_temporary TABLE opt_if_not_exists NAME '.' NAME
 '(' create_col_list ')'
 create_select_statement { emit("CREATESELECT %d %d 0 %s.%s", $2, $4, $5, $7);
 free($5); free($7); }
 ;

create_table_stmt: CREATE opt_temporary TABLE opt_if_not_exists NAME '.' NAME
 create_select_statement { emit("CREATESELECT %d %d 0 %s.%s", $2, $4, $5, $7);
 free($5); free($7); }
 ;

opt_temporary: /* nil */ { $$ = 0; }
 | TEMPORARY { $$ = 1;}
 ;

The heart of a CREATE DATABASE statement is the list of columns, or more precisely the
list of create_definitions, which includes both columns and indexes. The indexes can
be the PRIMARY KEY, which means that it’s unique for each record; a regular INDEX (also
called KEY); or a FULLTEXT index, which indexes individual words in the data. Each of
those takes a list of column names, for which we once again reuse the column_list rule
we defined for SELECT.

create_col_list: create_definition { $$ = 1; }
 | create_col_list ',' create_definition { $$ = $1 + 1; }
 ;

create_definition: PRIMARY KEY '(' column_list ')' { emit("PRIKEY %d", $4); }
 | KEY '(' column_list ')' { emit("KEY %d", $3); }
 | INDEX '(' column_list ')' { emit("KEY %d", $3); }
 | FULLTEXT INDEX '(' column_list ')' { emit("TEXTINDEX %d", $4); }
 | FULLTEXT KEY '(' column_list ')' { emit("TEXTINDEX %d", $4); }
 ;

Each definition is bracketed by an RPN STARTCOL operator since the set of per-column
options is large; this delimits each column’s options. The column itself is the name of
the column, the data type, and the optional attributes, such as whether the column can
contain null values, what its default value is, and whether it’s a key. (Declaring a column
to be a key is equivalent to creating an index on the column.) For the attributes, we
emit an ATTR operator for each one and count the number of attributes. The code here
doesn’t check for duplicates, but we could do so by making the value of column_atts a
structure with both a count and a bitmask and checking the bitmask as we did earlier
in SELECT options.

create_definition: { emit("STARTCOL"); } NAME data_type column_atts
 { emit("COLUMNDEF %d %s", $3, $2); free($2); }

column_atts: /* nil */ { $$ = 0; }
 | column_atts NOT NULLX { emit("ATTR NOTNULL"); $$ = $1 + 1; }

112 | Chapter 4: Parsing SQL

Download at Boykma.Com

 | column_atts NULLX
 | column_atts DEFAULT STRING
 { emit("ATTR DEFAULT STRING %s", $3); free($3); $$ = $1 + 1; }
 | column_atts DEFAULT INTNUM
 { emit("ATTR DEFAULT NUMBER %d", $3); $$ = $1 + 1; }
 | column_atts DEFAULT APPROXNUM
 { emit("ATTR DEFAULT FLOAT %g", $3); $$ = $1 + 1; }
 | column_atts DEFAULT BOOL
 { emit("ATTR DEFAULT BOOL %d", $3); $$ = $1 + 1; }
 | column_atts AUTO_INCREMENT
 { emit("ATTR AUTOINC"); $$ = $1 + 1; }
 | column_atts UNIQUE '(' column_list ')'
 { emit("ATTR UNIQUEKEY %d", $4); $$ = $1 + 1; }
 | column_atts UNIQUE KEY { emit("ATTR UNIQUEKEY"); $$ = $1 + 1; }
 | column_atts PRIMARY KEY { emit("ATTR PRIKEY"); $$ = $1 + 1; }
 | column_atts KEY { emit("ATTR PRIKEY"); $$ = $1 + 1; }
 | column_atts COMMENT STRING
 { emit("ATTR COMMENT %s", $3); free($3); $$ = $1 + 1; }
 ;

The syntax for the data type is long but not complicated. Many of the types allow the
number of characters or digits to be specified, so there’s an opt_length that takes one
or two length values. (We encode them into one number here; a structure would have
been more elegant.) Other options say whether a number is unsigned or displayed filled
with zeros, whether a string is treated as binary data, and, for text, what character set
and collation rule it uses. Those last two are specified as strings from a large set of
language and collation systems, but for our purposes we just accept any string. With
these auxiliary rules, we can now parse the long list of MySQL data types. Again we
encode the data type into a number, and again a structure would be more elegant, but
the number will do for our RPN.

The last two types, ENUM and SET, each take a list of strings that name the members of
the enumeration or set, which we parse as enum_val.

opt_length: /* nil */ { $$ = 0; }
 | '(' INTNUM ')' { $$ = $2; }
 | '(' INTNUM ',' INTNUM ')' { $$ = $2 + 1000*$4; }
 ;

opt_binary: /* nil */ { $$ = 0; }
 | BINARY { $$ = 4000; }
 ;

opt_uz: /* nil */ { $$ = 0; }
 | opt_uz UNSIGNED { $$ = $1 | 1000; }
 | opt_uz ZEROFILL { $$ = $1 | 2000; }
 ;

opt_csc: /* nil */
 | opt_csc CHAR SET STRING { emit("COLCHARSET %s", $4); free($4); }
 | opt_csc COLLATE STRING { emit("COLCOLLATE %s", $3); free($3); }
 ;

The Parser | 113

Download at Boykma.Com

data_type:
 BIT opt_length { $$ = 10000 + $2; }
 | TINYINT opt_length opt_uz { $$ = 10000 + $2; }
 | SMALLINT opt_length opt_uz { $$ = 20000 + $2 + $3; }
 | MEDIUMINT opt_length opt_uz { $$ = 30000 + $2 + $3; }
 | INT opt_length opt_uz { $$ = 40000 + $2 + $3; }
 | INTEGER opt_length opt_uz { $$ = 50000 + $2 + $3; }
 | BIGINT opt_length opt_uz { $$ = 60000 + $2 + $3; }
 | REAL opt_length opt_uz { $$ = 70000 + $2 + $3; }
 | DOUBLE opt_length opt_uz { $$ = 80000 + $2 + $3; }
 | FLOAT opt_length opt_uz { $$ = 90000 + $2 + $3; }
 | DECIMAL opt_length opt_uz { $$ = 110000 + $2 + $3; }
 | DATE { $$ = 100001; }
 | TIME { $$ = 100002; }
 | TIMESTAMP { $$ = 100003; }
 | DATETIME { $$ = 100004; }
 | YEAR { $$ = 100005; }
 | CHAR opt_length opt_csc { $$ = 120000 + $2; }
 | VARCHAR '(' INTNUM ')' opt_csc { $$ = 130000 + $3; }
 | BINARY opt_length { $$ = 140000 + $2; }
 | VARBINARY '(' INTNUM ')' { $$ = 150000 + $3; }
 | TINYBLOB { $$ = 160001; }
 | BLOB { $$ = 160002; }
 | MEDIUMBLOB { $$ = 160003; }
 | LONGBLOB { $$ = 160004; }
 | TINYTEXT opt_binary opt_csc { $$ = 170000 + $2; }
 | TEXT opt_binary opt_csc { $$ = 171000 + $2; }
 | MEDIUMTEXT opt_binary opt_csc { $$ = 172000 + $2; }
 | LONGTEXT opt_binary opt_csc { $$ = 173000 + $2; }
 | ENUM '(' enum_list ')' opt_csc { $$ = 200000 + $3; }
 | SET '(' enum_list ')' opt_csc { $$ = 210000 + $3; }
 ;

enum_list: STRING { emit("ENUMVAL %s", $1); free($1); $$ = 1; }
 | enum_list ',' STRING { emit("ENUMVAL %s", $3); free($3); $$ = $1 + 1; }
 ;

The other version of a CREATE uses a SELECT statement preceded by some optional key-
words and an optional meaningless AS.

create_select_statement: opt_ignore_replace opt_as select_stmt { emit("CREATESELECT %d", $1) }
 ;

opt_ignore_replace: /* nil */ { $$ = 0; }
 | IGNORE { $$ = 1; }
 | REPLACE { $$ = 2; }
 ;

User Variables
The last statement we parse is a SET statement, which is a MySQL extension that sets
user variables. The assignment can use either :=, which we call ASSIGN, or a plain = sign,
checking as always to be sure it’s not some other comparison operator.

114 | Chapter 4: Parsing SQL

Download at Boykma.Com

 /**** set user variables ****/

stmt: set_stmt { emit("STMT"); }
 ;

set_stmt: SET set_list ;

set_list: set_expr | set_list ',' set_expr ;

set_expr:
 USERVAR COMPARISON expr { if ($2 != 4) { yyerror("bad set to @%s", $1); YYERROR; }
 emit("SET %s", $1); free($1); }
 | USERVAR ASSIGN expr { emit("SET %s", $1); free($1); }
 ;

That ends our SQL syntax. MySQL has many, many other statements, but these give
a reasonable idea of what’s involved in parsing them.

The Parser Routines
Finally, we have a few support routines. The emit routine just prints out the RPN. In a
more sophisticated compiler, it could act as a simpleminded assembler and emit a
stream of bytecode operators for an RPN interpreter.

The yyerror and main routines should be familiar from the previous chapter. This main
program accepts a -d switch to turn on parse-time debugging, a useful feature when
debugging a grammar as complex as this one.

%%
void
emit(char *s, ...)
{
 extern yylineno;

 va_list ap;
 va_start(ap, s);

 printf("rpn: ");
 vfprintf(stdout, s, ap);
 printf("\n");
}

void
yyerror(char *s, ...)
{
 extern yylineno;

 va_list ap;
 va_start(ap, s);

 fprintf(stderr, "%d: error: ", yylineno);
 vfprintf(stderr, s, ap);
 fprintf(stderr, "\n");
}

The Parser | 115

Download at Boykma.Com

main(int ac, char **av)
{
 extern FILE *yyin;

 if(ac > 1 && !strcmp(av[1], "-d")) {
 yydebug = 1; ac--; av++;
 }

 if(ac > 1 && (yyin = fopen(av[1], "r")) == NULL) {
 perror(av[1]);
 exit(1);
 }

 if(!yyparse())
 printf("SQL parse worked\n");
 else
 printf("SQL parse failed\n");
} /* main */

The Makefile for the SQL Parser
The Makefile runs the lexer and parser through flex and bison, respectively, and com-
piles them together. The dependencies take care of generating and compiling the scan-
ner, including the bison-generated header file.

Makefile for pmysql
CC = cc -g
LEX = flex
YACC = bison
CFLAGS = -DYYDEBUG=1

PROGRAMS5 = pmysql

all: ${PROGRAMS5}

chapter 5

pmysql: pmysql.tab.o pmysql.o
 ${CC} -o $@ pmysql.tab.o pmysql.o

pmysql.tab.c pmysql.tab.h: pmysql.y
 ${YACC} -vd pmysql.y

pmysql.c: pmysql.l
 ${LEX} -o $*.c $<

pmysql.o: pmysql.c pmysql.tab.h

.SUFFIXES: .pgm .l .y .c

116 | Chapter 4: Parsing SQL

Download at Boykma.Com

Exercises
1. In several places, the SQL parser accepts more general syntax than SQL itself per-

mits. For example, the parser accepts any expression as the left operand of a LIKE
predicate, although that operand has to be a column reference. Fix the parser to
diagnose these erroneous inputs. You can either change the syntax or add action
code to check the expressions. Try both to see which is easier and which gives
better diagnostics.

2. Turn the parser into a SQL cross-referencer, which reads a set of SQL statements
and produces a report showing for each name where it is defined and where it is
referenced.

3. (Term project.) Modify the embedded SQL translator to interface to a real database
on your system.

Exercises | 117

Download at Boykma.Com

Download at Boykma.Com

CHAPTER 5

A Reference for Flex Specifications

In this chapter we describe the syntax of flex programs, along with the various options
and support functions available. POSIX lex is almost an exact subset of flex, so we note
which parts of flex are extensions beyond what POSIX requires.

After the section on the structure of a lex program, the sections in this chapter are in
alphabetical order by feature.

Structure of a Flex Specification
A flex program consists of three parts: the definition section, the rules section, and the
user subroutines.

...definition section ...
%%

... rules section ...
%%
... user subroutines ...

The parts are separated by lines consisting of two percent signs. The first two parts are
required, although a part may be empty. The third part and the preceding %% line may
be omitted.

Definition Section
The definition section can include options, the literal block, definitions, start condi-
tions, and translations. (There is a section on each in this reference.) Lines that start
with whitespace are copied verbatim to the C file. Typically this is used to include
comments enclosed in /* and */, preceded by whitespace.

119

Download at Boykma.Com

Rules Section
The rules section contains pattern lines and C code. Lines that start with whitespace,
or material enclosed in %{ and %}, are C code that is copied verbatim to yylex(). C code
at the beginning of the rules section will be at the beginning of yylex() and can include
declarations of variables used in the scanner, and code to run each time yylex() is called.

C code lines are copied verbatim to the generated C file. Lines at the beginning of the
rules section are placed near the beginning of the generated yylex() function and should
be declarations of variables used by code associated with the patterns and initialization
code for the scanner. C code lines anywhere else should contain only comments, since
it’s unpredictable where in the scanner they’ll be. (This is how you put comments in
the rules section outside of actions.)

A line that starts with anything else is a pattern line. Pattern lines contain a pattern
followed by some whitespace and C code to execute when the input matches the pat-
tern. If the C code is more than one statement or spans multiple lines, it must be en-
closed in braces ({ } or %{ %}).

When a flex scanner runs, it matches the input against the patterns in the rules section.
Every time it finds a match (the matched input is called a token), it executes the C code
associated with that pattern. If a pattern is followed by a single vertical bar, instead of
C code, the pattern uses the same C code as the next pattern in the file. When an input
character matches no pattern, the lexer acts as though it matched a pattern whose code
is ECHO;, which writes a copy of the token to the output.

User Subroutines
The contents of the user subroutines section are copied verbatim by flex to the C file.
This section typically includes routines called from the rules. If you redefine
yywrap(), the new version or supporting subroutines might be here.

In a large program, it is often more convenient to put the supporting code in a separate
source file to minimize the amount of material that is recompiled when you change the
lex file.

BEGIN
The BEGIN macro switches among start states. You invoke it, usually in the action code
for a pattern, as follows:

BEGIN statename;

The scanner starts in state 0 (zero), also known as INITIAL. All other states must be
named in %s or %x lines in the definition section. (See “Start States” on page 136.)

120 | Chapter 5: A Reference for Flex Specifications

Download at Boykma.Com

Notice that even though BEGIN is a macro, the macro itself doesn’t take any arguments,
and the state name need not be enclosed in parentheses, although it is good style
to do so.

C++ Scanners
Although flex has an option to create a C++ scanner, the manual says it’s experimental,
and the code is buggy and doesn’t work very well.* All is not lost for C++ programmers,
though. If you generate a C lexer, it will compile with a C++ compiler, and you can tell
a C++ bison parser to call a C lexer.

Context Sensitivity
Flex provides several ways to make your patterns sensitive to left and right context,
that is, to the text that precedes or follows the token.

Left Context
There are three ways to handle left context: the special beginning-of-line pattern char-
acter, start states, and explicit code.

The character ^ at the beginning of a pattern tells lex to match the pattern only at the
beginning of the line. The ^ doesn’t match any characters; it just specifies the context.

Start states can be used to require that one token precede another:

%s MYSTATE
%%
first { BEGIN MYSTATE; }
. . .
<MYSTATE>second { BEGIN 0; }

In this lexer, the second token is recognized only after the first token. There may be
intervening tokens between the first and second.

In some cases you can fake left context sensitivity by setting flags to pass context in-
formation from one token’s routine to another:

 %{
 int flag = 0;
 %}
 %%
 a { flag = 1; }
 b { flag = 2; }
 zzz {
 switch(flag) {
 case 1: a_zzz_token(); break;

* According to the guy who wrote it.

Context Sensitivity | 121

Download at Boykma.Com

 case 2: b_zzz_token(); break;
 default: plain_zzz_token(); break;
 }
 flag = 0;
 }

Right Context
There are three ways to make token recognition depend on the text to the right of the
token: the special end-of-line pattern character, the slash operator, and yyless().

The $ character at the end of a pattern makes the token match only at the end of a line,
that is, immediately before a \n character. Like the ^ character, $ doesn’t match any
characters; it just specifies context. It is exactly equivalent to /\n and, therefore, can’t
be used with trailing context.

The / character in a pattern lets you include explicit trailing context. For instance, the
pattern abc/de matches the token abc, but only if it is immediately followed by de.
The / itself matches no characters. Lex counts trailing context characters when deciding
which of several patterns has the longest match, but the characters do not appear in
yytext, nor are they counted in yyleng.

The yyless() function tells lex to “push back” part of the token that was just read. The
argument to yyless() is the number of token characters to keep. For example:

abcde { yyless(3); }

The previous has nearly the same effect as abc/de does because the call to yyless()
keeps three characters of the token and puts back the other two. The only differences
are that in this case the token in yytext contains all five characters and yyleng contains
five instead of three.

Definitions (Substitutions)
Definitions (or substitutions) allow you to give a name to all or part of a regular ex-
pression and refer to it by name in the rules section. This can be useful to break up
complex expressions and to document what your expressions are supposed to be doing.
A definition takes this form:

NAME expression

The name can contain letters, digits, hyphens, and underscores, and it must not start
with a digit.

In the rules section, patterns may include references to substitutions with the name in
braces, for example, {NAME}. The expression corresponding to the name is substituted
into the pattern as though it were enclosed in parentheses. For example:

DIG [0-9]
...

122 | Chapter 5: A Reference for Flex Specifications

Download at Boykma.Com

%%
{DIG}+ process_integer();
{DIG}+\.{DIG}* |
\.{DIG}+ process_real() ;

ECHO
In the C code associated with a pattern, the macro ECHO writes the token to the current
output file yyout. It is equivalent to the following:

fprintf(yyout, "%s", yytext);

The default action in flex for input text that doesn’t match any pattern is to write the
text to the output, equivalent to ECHO. In flex, %option nodefault or the command-line
flag -s or --nodefault makes the default action abort, which is useful in the common
case that the scanner is supposed to include patterns to handle all possible input.

Input Management
Flex offers a variety of ways to manage the source of the text to be scanned. At the
beginning of your program, you can assign any open stdio file to yyin to have the
scanner read from that file. If that’s not adequate, flex provides several different ways
to change the input source.

Stdio File Chaining
You can tell the lexer to read from any stdio file by calling yyrestart(file). Also, when
a lexer built with %option yywrap reaches the end of the input file, it calls yywrap(),
which can switch to a different input file. See the sections “yyrestart()” and “yy-
wrap()” on page 139 for more details.

Input Buffers
Flex scanners read input from an input buffer. An input buffer can be associated with
a stdio file, in which case the lexer reads input from the file, or it can just be associated
with a string in memory. The type YY_BUFFER_STATE is a pointer to a flex input buffer.

YY_BUFFER_STATE bp;
FILE *f;

f = fopen(..., "r");
bp = yy_create_buffer(f,YY_BUF_SIZE); new buffer reading from f

yy_switch_to_buffer(bp); use the buffer we just made
...
yy_flush_buffer(bp); discard buffer contents
...
void yy_delete_buffer (bp); free buffer

Input Management | 123

Download at Boykma.Com

Call yy_create_buffer to make a new input buffer associated with an open stdio file.
Its second argument is the size of the buffer, which should be YY_BUF_SIZE.

Call yy_switch_to_buffer to make the scanner read from a buffer. You can
switch buffers as needed. The current buffer is YY_CURRENT_BUFFER. You can call
yy_flush_buffer to discard whatever is in the buffer, which is occasionally useful in
error recovery in interactive scanners to get back to a known state. Call
yy_delete_buffer to free a buffer no longer in use.

Input from Strings
Normally flex reads from a file, but sometimes you want it to read from some other
source, such as a string in memory.

bp = yy_scan_bytes(char *bytes, len); scan a copy of bytes
bp = yy_scan_string("string"); scan a copy of null-terminated string

bp = yy_scan_buffer (char *base, yy_size_t size); scan (size-2) bytes in place

The routines yy_scan_bytes and yy_scan_string create a buffer with a copy of the text
to be scanned. A slightly faster routine is yy_scan_buffer, which scans text in place, but
the last two bytes of the buffer must be nulls (\0), which are not scanned. The type
yy_size_t is flex’s internal type used for sizes of objects.

Once a string buffer is created, use yy_switch_to_buffer to tell the scanner to read from
it, and use yy_delete_buffer to free the buffer and (if appropriate) the copy of the text.
The scanner treats the end of the buffer as an end-of-file.

File Nesting
Many input languages have features to allow input files to include other files, such as
#include in C. Flex provides a pair of functions to manage a stack of input buffers:

void yypush_buffer_state(bp); switch to bp, stack old buf

void yypop_buffer_state(); delete current buffer, return to previous

In practice, these functions are inadequate for any but the simplest input nesting, since
they don’t maintain any auxiliary information such as the line number or name of the
current file. Maintaining your own stack of input files is not hard. See Example 2-3 for
sample code.

Also helpful to maintain an input stack is the special token pattern <<EOF>>, which
matches at the end of a file after the call to yywrap().

124 | Chapter 5: A Reference for Flex Specifications

Download at Boykma.Com

input()
The input() function conceptually provides characters to the lexer. When the lexer
matches characters, it conceptually calls input() to fetch each character. Flex bypasses
input() for performance reasons, but the effect is the same.

The most likely place to call input() is in an action routine to do something special
with the text that follows a particular token. For example, here is a way to handle C
comments:

"/*" { int c1 = 0, c2 = input ();

 for(;;) {
 if(c2 == EOF)
 break;
 if(c1 == '*' && c2 == '/')
 break;
 c1 = c2;
 c2 = input();
 }
 }

The calls to input() process the characters until either end-of-file or the characters */
occur. This approach is an alternative to exclusive start states (see “Start
States” on page 136) to handle C-style comments. It is the best way to handle very long
quoted strings and other tokens that might be too long for flex to buffer itself in its
typical 16K input buffer.

If you use a C++ compiler, input is called yyinput instead to avoid name collisions with
C++ libraries.

YY_INPUT
Flex scanners read input into a buffer using the macro YY_INPUT(buf,result,
max_size). Whenever the scanner needs more input and the buffer is empty, it invokes
YY_INPUT, where buf and maxsize are the buffer and its size, respectively, and result is
where to put the actual amount read or zero at EOF. (Since this is a macro, it’s
result, not *result.) When the buffer is first set up, it calls isatty() to see whether the
input source is the console and, if so, reads one character at a time rather than large
chunks.

The main situation where redefining YY_INPUT is useful is when reading from an input
source that is neither a string nor a stdio file.

Flex Library
Flex comes with a small library of helpful routines. You can link in the library by giving
the -lfl flag at the end of the cc command line on Unix systems, or the equivalent on
other systems. It contains versions of main() and yywrap().

Flex Library | 125

Download at Boykma.Com

Flex comes with a minimal main program, which can be useful for quickie programs
and for testing, and comes with a stub yywrap. They’re so simple we reproduce
them here:

main(int ac, char **av)
{
 return yylex();
}

int yywrap() { return 1; }

Interactive and Batch Scanners
A flex scanner sometimes needs to look ahead one character in the input to see whether
the current token is done. (Think of a number that is a string of digits.) It turns out that
the scanner runs a little faster if it always looks ahead even when it doesn’t need to, but
that would cause very unpleasant results when a scanner is reading directly from the
console. For example, if the current token is a newline, \n, and it reads ahead, the
scanner will wait until you type another new line before going ahead.

To minimize the unpleasantness, the scanner can run either in batch mode, where it
always looks ahead, or in interactive mode, where it looks ahead only when it needs to
do so (which is slightly slower). If you use the standard input routines, the scanner will
check to see whether the input source is a terminal using isatty() and, if so, switch to
interactive mode. You can use %option batch or %option interactive to force it always
to use one or the other mode. Forcing batch mode can make sense if you know that
your scanner will never need to be interactive, for example, if you read the input yourself
or if it always reads from a file.

Line Numbers and yylineno
If you keep track of the line number in the input file, you can report it in error messages.
If you set %option yylineno, flex defines yylineno to contain the current line number
and automatically updates it each time it reads a \n character. The lexer does not ini-
tialize yylineno, so you need to set it to 1 each time you start reading a file. Lexers that
handle nested include files have to save and restore the line number associated with
each file if they want to track line numbers per file.

Literal Block
A literal block in the definition section is C code bracketed by the lines %{ and %}.

%{
... C code and declarations...
%}

126 | Chapter 5: A Reference for Flex Specifications

Download at Boykma.Com

The contents of each literal block are copied verbatim to the generated C source file.
Literal blocks in the definition section are copied before the beginning of yylex(). The
literal block usually contains declarations of variables and functions used by code in
the rules section, as well as #include lines for header files.

If a literal block starts with %top{ rather than %{, it’s copied near the front of the gen-
erated program, typically for #include files or #define lines to set YY_BUF_SIZE.

A literal block at the beginning of the rules section is copied near the beginning of
yylex() after the declarations of local variables, so it can contain more declarations and
setup code. A literal block elsewhere in the rules section is copied to an unspecified
place in yylex, so it should contain only comments.

See also “YY_USER_ACTION” on page 139.

Multiple Lexers in One Program
You may want to have lexers for two partially or entirely different token syntaxes in
the same program. For example, an interactive debugging interpreter might have one
lexer for the programming language and use another for the debugger commands.

There are two basic approaches to handling two lexers in one program: combine them
into a single lexer or put two complete lexers into the program.

Combined Lexers
You can combine two lexers into one by using start states. All of the patterns for each
lexer are prefixed by a unique set of start states. When the lexer starts, you need a little
code to put the lexer into the appropriate initial state for the particular lexer in use, for
example, the following code (which will be copied at the front of yylex()):

%s INITA INITB INITC
%%
%{
 extern first_tok, first_lex;

 if(first_lex) {
 BEGIN first_lex;
 first_lex = 0;
 }
 if(first_tok) {
 int holdtok = first_tok;
 first_tok = 0;
 return holdtok;
 }
%}

In this case, before you call the lexer, you set first_lex to the initial state for the lexer.
You will usually use a combined lexer in conjunction with a combined yacc parser, so

Multiple Lexers in One Program | 127

Download at Boykma.Com

you’ll also usually have code to force an initial token to tell the parser which grammar
to use. See “Variant and Multiple Grammars” on page 163.

The advantages of this approach are that the object code is somewhat smaller, since
there is only one copy of the lexer code, and the different rule sets can share rules. The
disadvantages are that you have to be careful to use the correct start states everywhere,
you cannot have both lexers active at once (i.e., you can’t call yylex() recursively unless
you use the reentrant lexer option), and it is difficult to use different input sources for
the different lexers.

Multiple Lexers
The other approach is to include two complete lexers in your program. The trick is to
change the names that lex uses for its functions and variables so the two lexers can be
generated separately by flex and then compiled together into one program.

Flex provides a command-line switch and program option to change the prefix used
on the names in the scanner generated by lex. For example, these options tell flex to
use the prefix “foo” rather than “yy” and to put the generated scanner in foolex.c.

 %option prefix="foo"
 %option outfile="foolex.c"

You can also set options on the command line:

 $ flex --outfile=foolex.c --prefix=foo foo.l

Either way, the generated scanner has entry point foolex(), reads from stdio file
fooin, and so forth. Somewhat confusingly, flex will generate a set of #define macros
at the front of the lexer that redefine the standard “yy” names to the chosen prefix. This
lets you write your lexer using the standard names, but the externally visible names will
all use the chosen prefix.

#define yy_create_buffer foo_create_buffer
#define yy_delete_buffer foo_delete_buffer
#define yy_flex_debug foo_flex_debug
#define yy_init_buffer foo_init_buffer
#define yy_flush_buffer foo_flush_buffer
#define yy_load_buffer_state foo_load_buffer_state
#define yy_switch_to_buffer foo_switch_to_buffer
#define yyin fooin
#define yyleng fooleng
#define yylex foolex
#define yylineno foolineno
#define yyout fooout
#define yyrestart foorestart
#define yytext footext
#define yywrap foowrap
#define yyalloc fooalloc
#define yyrealloc foorealloc
#define yyfree foofree

128 | Chapter 5: A Reference for Flex Specifications

Download at Boykma.Com

Options When Building a Scanner
Flex offers several hundred options when building a scanner. Most can be written as

%option name

at the front of the scanner or as --name on the command line. To turn an option off,
precede it with no, as in %option noyywrap or --noyywrap. In most cases, putting the
options in %option lines is preferable to putting them on the command line, since a
scanner typically won’t work if the options are wrong. For a full list of options, see the
section “Index of Scanner Options” in the info documentation that comes with flex.

Portability of Flex Lexers
Flex lexers are fairly portable among C implementations. There are two levels at which
you can port a lexer: the original flex specification or the C source file generated by flex.

Porting Generated C Lexers
Flex generates portable C code, and you can usually move the code to any C compiler
without trouble. Be sure to use %option noyywrap or to include your own version of
yywrap() to avoid needing the flex library. For portability to very old C compilers,
%option noansi-definitions and %option noansi-prototypes tell flex to generate
K&R procedure definitions and prototypes, respectively.

Buffer sizes

You may want to adjust the size of some buffers. Flex uses two input buffers, each by
default 16K, which may be too big for some microcomputer implementations. You can
define the macro YY_BUF_SIZE in the definition section:

 %{
 #define YY_BUF_SIZE 4096
 %}

If your lexer uses REJECT, it will also allocate a backup state buffer four times as large
as YY_BUF_SIZE (eight times on 64-bit machines). Don’t use REJECT if space is an issue.

Character sets

The knottiest portability problem involves character sets. The C code generated by
every flex implementation uses character codes as indexes into tables in the lexer. If
both the original and target machines use the same character code, such as ASCII, the
ported lexer will work. You may have to deal with different line end conventions: Unix
systems end a line with a plain \n, while Microsoft Windows and other systems use
\r\n. You often can have lexers ignore \r and treat \n as the line end in either case.

Portability of Flex Lexers | 129

Download at Boykma.Com

When the original and target machines use different character sets, for example, ASCII
and EBCDIC, the lexer won’t work at all, since all of the character codes used as indexes
will be wrong. Sophisticated users have sometimes been able to post-process the tables
to rebuild them for other character sets, but in general the only reasonable approach is
to find a version of flex that runs on the target machine or else to redefine the lexer’s
input routine to translate the input characters into the original character set. See “Input
from Strings” on page 124 for how to change the input routine.

Reentrant Scanners
The normal code for a flex scanner places its state information in static variables so that
each call to yylex() resumes where the previous one left off, using the existing input
buffer, input file, start state, and so forth. In some situations, it can be useful to have
multiple copies of the scanner active at once, typically in threaded programs that
handle multiple independent input sources. For this situation, flex provides
%option reentrant or --reentrant.

yyscan_t scanner;

if(yylex_init(&scanner)) { printf("no scanning today\n"); abort(); }
while((yylex(scanner))
 ... do something ...;
yylex_destroy(scanner);

In a reentrant scanner, all of the state information about the scan in progress is kept in
a yyscan_t variable, which is actually a pointer to the structure with all the state. You
create the scanner with yylex_init(), passing the address of the yyscan_t as an argu-
ment, and it returns 0 on success or 1 if it can’t allocate the structure. Then you pass
the yyscan_t to every call to yylex() and finally delete it with yylex_destroy. Each call
to yylex_init creates a separate scanner, and several scanners can be active at once,
passing the appropriate structure to each call to yylex().

In a reentrant scanner, some variables commonly used in yylex are redefined as macros,
so you can use them the same as in an ordinary scanner. These variables are yyin, yyout,
yyextra, yyleng, yytext, yylineno, yycolumn, and yy_flex_debug. The macros BEGIN,
YY_START, YYSTATE, yymore(), unput(), and yyless() are also modified, so you can use
them the same as in an ordinary scanner. All of the routines that create and manipulate
input buffers take an additional yyscan_t argument, for example, yyrestart(file,
scanner). The other routines that take a yyscan_t argument are yy_switch_to_buffer,
yy_create_buffer, yy_delete_buffer, yy_flush_buffer, yypush_buffer_state,
yypop_buffer_state, yy_scan_buffer, yy_scan_string, and yy_scan_bytes.

Extra Data for Reentrant Scanners
When using a reentrant scanner, you’ll often have some other per-scanner data, such
as a symbol table for the names the scanner has matched. You can use

130 | Chapter 5: A Reference for Flex Specifications

Download at Boykma.Com

yylex_init_extra rather than yylex_init, passing it a pointer to your own per-scanner
data. Within yylex(), your pointer is available as yyextra. The extra data is of type
YY_EXTRA_TYPE, which is normally void *, but you can #define it to another type if
you want.

yyscan_t scanner;
symbol *symp;

symp = symtabinit(); make per-scanner symbol table

if(yylex_init_extra(symp, &scanner)) { printf("no scanning today\n"); abort(); }
while((yylex(scanner))
 ... do something ...;
yylex_destroy(scanner);

... inside yylex ...
[a-z]+ { symlookup(yyextra, yylval); }

Access to Reentrant Scanner Data
In a normal scanner, code outside yylex() can refer directly to yyin, yyout, and other
global variables, but in a reentrant scanner, they’re part of the per-scanner data struc-
ture. Flex provides access routines to get and set the major variables.

YY_EXTRA_TYPE yyget_extra (yyscan_t yyscanner); yyextra
void yyset_extra (YY_EXTRA_TYPE user_defined ,yyscan_t yyscanner);

FILE *yyget_in (yyscan_t yyscanner); yyin
void yyset_in (FILE * in_str ,yyscan_t yyscanner);

FILE *yyget_out (yyscan_t yyscanner); yyout
void yyset_out (FILE * out_str ,yyscan_t yyscanner);

int yyget_lineno (yyscan_t yyscanner);
void yyset_lineno (int line_number ,yyscan_t yyscanner);

int yyget_leng(yyscan_t yyscanner); yyleng, read only

char *yyget_text(yyscan_t yyscanner); yytext

These functions are all available in nonreentrant scanners, without the yyscanner ar-
gument, although there’s little need for them since they are entirely equivalent to read-
ing or setting the appropriate variable.

Reentrant Scanners, Nested Files, and Multiple Scanners
Reentrant scanners, nested files, and multiple scanners all address sort of the same
issue, more than one scanner in the same program, but they each do very different
things.

Reentrant Scanners | 131

Download at Boykma.Com

• Reentrant scanners allow you to have multiple instances simultaneously active that
are applying the same set of patterns to separate input sources.

• Nested files (using yy_switch_to_buffer and related routines) allow you to have a
single scanner that reads from one file, then another, and then perhaps returns to
the first file.

• Multiple scanners allow you to apply different sets of patterns to different input
sources.

You can combine all three of these as needed. For example, you can call
yy_switch_to_buffer in a reentrant scanner to change the input source for a particular
instance. You can say %option reentrant prefix="foo" to create a scanner that can be
invoked multiple times (call foolex_init to get started) and can be linked into the same
program with other reentrant or nonreentrant scanners.

Using Reentrant Scanners with Bison
Bison has its own option to create a reentrant parser, known as pure-parser, which
can, with some effort, be used along with a reentrant scanner. A pure parser normally
gets tokens by calling yylex, with a pointer to the place to put the token value, but
without the yyscan_t value that flex needs. (Flex and bison developers don’t always
talk to each other.) Flex provides %option reentrant bison-bridge, which changes the
declaration of yylex to be

 int yylex (YYSTYPE * yylval_param ,yyscan_t yyscanner);

and also sets yylval automatically from the argument. One important difference from
normal scanners is that yylval is now a pointer to a union rather than a union, so a
reference that was yylval.member is now yylval->member. See “Pure Scanners and Pars-
ers” on page 209 for an example of a pure bison parser calling a reentrant scanner.

Regular Expression Syntax
Flex patterns are an extended version of the regular expressions used by editors and
utilities such as grep. Regular expressions are composed of normal characters, which
represent themselves, and metacharacters, which have special meaning in a pattern. All
characters other than those listed in the following section are regular characters. White-
space (spaces and tabs) separate the pattern from the action and so must be quoted to
include them in a pattern.

Metacharacters
The metacharacters in a flex expression include the following:

.
Matches any single character except the newline character \n.

132 | Chapter 5: A Reference for Flex Specifications

Download at Boykma.Com

[]
Match any one of the characters within the brackets. A range of characters is in-
dicated with the - (dash), for example, [0-9] for any of the 10 digits. If the first
character after the open bracket is a dash or close bracket, it is not interpreted as
a metacharacter. If the first character is a circumflex ^, it changes the meaning to
match any character except those within the brackets. (Such a character class will
match a newline unless you explicitly exclude it.) Other metacharacters have no
special meaning within square brackets except that C escape sequences starting
with \ are recognized. POSIX added more special square bracket patterns for in-
ternationalization. See the last few items in this list for details.

[a-z]{-}[jv] [a-f]{+}[0-9]
Set difference or union of character classes. The pattern matches characters that
are in the first class, with the characters in the second class omitted (for {-}) or
added (for {+}).

*
Matches zero or more of the preceding expression. For example, the pattern a.*z
matches any string that starts with a and ends with z, such as az, abz or alcatraz.

+
Matches one or more occurrence of the preceding regular expression. For example,
x+ matches x, xxx, or xxxxxx, but not an empty string, and (ab)+ matches ab, abab,
ababab, and so forth.

?
Matches zero or one occurrence of the preceding regular expression. For example,
-?[0-9]+ indicates a number with an optional leading unary minus.

{}
Mean different things depending on what is inside. A single number {n} means n
repetitions of the preceding pattern; for example, [A-Z]{3} matches any three up-
percase letters. If the braces contain two numbers separated by a comma, {n,m},
they are the minimum and maximum numbers of repetitions of the preceding pat-
tern. For example, A{1,3} matches one to three occurrences of the letter A. If the
second number is missing, it is taken to be infinite, so {1,} means the same as +,
and {0,} is the same as *. If the braces contain a name, it refers to the substitution
by that name.

\
If the following character is a lowercase letter, then it is a C escape sequence such
as \t for tab. Some implementations also allow octal and hex characters in the form
\123 and \x3f. Otherwise, \ quotes the following character, so * matches an as-
terisk.

()
Group a series of regular expressions together. Each of *, +, and [] affects only the
expression immediately to its left, and | normally affects everything to its left and

Regular Expression Syntax | 133

Download at Boykma.Com

right. Parentheses can change this; for example, (ab|cd)?ef matches abef, cdef, or
just ef.

|
Matches either the preceding regular expression or the subsequent regular expres-
sion. For example, twelve|12 matches either twelve or 12.

"..."
Match everything within the quotation marks literally. Metacharacters other than
\ lose their meaning. For example, "/*" matches the two characters /*.

/
Matches the preceding regular expression but only if followed by the following
regular expression. For example, 0/1 matches “0” in the string “01” but does not
match anything in the strings “0” or “02”. Only one slash is permitted per pattern,
and a pattern cannot contain both a slash and a trailing $.

^
As the first character of a regular expression, it matches the beginning of a line; it
is also used for negation within square brackets. Otherwise, it’s not special.

$
As the last character of a regular expression, it matches the end of a line—otherwise
not special. This has the same meaning as /\n at the end of an expression.

<>
A name or list of names in angle brackets at the beginning of a pattern makes that
pattern apply only in the given start states.

<<EOF>>
The special pattern <<EOF>> matches the end of file.

(?# comment)
Perl-style expression comments.

(?a:pattern) or (?a-x:pattern)
Perl-style pattern modifiers. Interpret the pattern using modifier a, but without
modifier x. The modifiers are i for case insensitive, s to match as though everything
is a single line (in particular, make the . match a \n character), and x to ignore
whitespace and C-style comments. The pattern can extend over more than one line.

(?i:xyz) [Xx][Yy][Zz]

(?i:x(?-i:y)z) [Xx]y[Zz]

(?s:a.b) a(.|\n)b

(?x:a /* hi */ b) ab

Flex also allows a limited set of POSIX character classes inside character class ex-
pressions:

134 | Chapter 5: A Reference for Flex Specifications

Download at Boykma.Com

[:alnum:] [:alpha:] [:blank:] [:cntrl:] [:digit:] [:graph:] [:lower:]
[:print:] [:punct:] [:space:] [:upper:] [:xdigit:]

A character class expression stands for any character of a named type handled by
the ctype macros, with the types being alnum, alpha, blank, cntrl, digit, graph,
lower, print, punct, space, upper, and xdigit. The class name is enclosed in square
brackets and colons and must itself be inside a character class. For example,
[[:digit:]] would be equivalent to [0123456789], and [x[:xdigit:]], equivalent
to [x0123456789AaBbCcDdEeFf].

REJECT
Usually lex separates the input into nonoverlapping tokens. But sometimes you want
all occurrences of a token even if it overlaps with other tokens. The special action
REJECT lets you do this. If an action executes REJECT, flex conceptually puts back the
text matched by the pattern and finds the next best match for it. The example finds all
occurrences of the words pink, pin, and ink in a file, even when they overlap:

...
%%
pink { npink++; REJECT; }
ink { nink++; REJECT; }
pin { npin++; REJECT; }
. |
\n ; /* discard other characters */

If the input contains the word pink, all three patterns will match. Without the REJECT
statements, only pink would match.

Scanners that use REJECT are much larger and slower than those that don’t, since they
need considerable extra information to allow backtracking and re-lexing.

Returning Values from yylex()
The C code executed when a pattern matches a token can contain a return statement
that returns a value from yylex() to its caller, typically a parser generated by yacc. The
next time yylex() is called, the scanner picks up where it left off. When a scanner
matches a token of interest to the parser (e.g., a keyword, variable name, or operator),
it returns to pass the token back to the parser. When it matches a token not of interest
to the parser (e.g., whitespace or a comment), it does not return, and the scanner im-
mediately proceeds to match another token.

This means that you cannot restart a lexer just by calling yylex(). You have to reset it
into the default state using BEGIN INITIAL and reset the input state so that the next call

Returning Values from yylex() | 135

Download at Boykma.Com

to input() will start reading the new input. A call to yyrestart(file), where file is a
standard I/O file pointer, arranges to start reading from that file.

Start States
You can declare start states, also called start conditions or start rules, in the definition
section. Start states are used to limit the scope of certain rules or to change the way the
lexer treats part of the file. Start states come in two versions, inclusive declared with
%s and exclusive declared with %x. For example, suppose we want to scan the following
C preprocessor directive:

#include <somefile.h>

Normally, the angle brackets and the filename would be scanned as the five tokens <,
somefile, ., h, and >, but after #include, they are a single filename token. You can use
a start state to apply a set of rules only at certain times. Be warned that those rules that
do not have start states can apply in any inclusive state! The BEGIN statement (see
“BEGIN” on page 120) in an action sets the current start state. For example:

%s INCLMODE
%%
^"#include" { BEGIN INCLMODE; }
<INCLMODE>"<" [^>\n]+">" { ... do something with the name ... }
<INCLMODE>\n { BEGIN INITIAL; /* return to normal */ }

You declare a start state with a %s or %x line. For example:

%s PREPROC

The previous code creates the inclusive start state PREPROC. In the rules section, then, a
rule that has <PREPROC> prepended to it will apply only in state PREPROC. The standard
state in which lex starts is state zero, also known as INITIAL. The current start state can
be found in YY_START (also called YYSTATE for compatibility with older versions of lex),
which is useful when you have a state that wants to switch back to whatever the previous
state was, for example:

%s A B C X
 int savevar;
%%
<A,B,C>start { save = YY_START; BEGIN X; }
<X>end { BEGIN save;

Flex also has exclusive start states declared with %x. The difference between regular and
exclusive start states is that a rule with no start state is not matched when an exclusive
state is active. In practice, exclusive states are a lot more useful than regular states, and
you will probably want to use them.

Exclusive start states make it easy to do things like recognize C language comments:

%x COMMENT
%%
"/*" { BEGIN COMMENT; /* switch to comment mode */ }

136 | Chapter 5: A Reference for Flex Specifications

Download at Boykma.Com

<COMMENT>. |
<COMMENT>\n ; /* throw away comment text */
<COMMENT>"*/" { BEGIN INITIAL; /* return to regular mode */ }

This wouldn’t work using regular start states since all of the regular token patterns
would still be active in COMMENT state.

unput()
The macro unput(c) returns the character c to the input stream. Unlike the analogous
stdio routine unputc(), you can call unput() several times in a row to put several char-
acters back in the input. The limit of data “pushed back” by unput() varies, but it is
always at least as great as the longest token the lexer recognizes.

For example, when expanding macros such as C’s #define, you need to insert the text
of the macro in place of the macro call. One way to do this is to call unput() to push
back the text, for example:

... in lexer action code...
char *p = macro_contents () ;
char *q = p + strlen(p);

while(q > p)
 unput(*--q); /* push back right-to-left */

yyinput() yyunput()
In C++ scanners, the macros input() and unput() are called yyinput() and yyunput()
to avoid colliding with C++ library names.

yyleng
Whenever a scanner matches a token, the text of the token is stored in the null-
terminated string yytext, and its length is in yyleng. The length in yyleng is the same
as the value that would be returned by strlen(yytext).

yyless()
You can call yyless(n) from the code associated with a rule to “push back” all but the
first n characters of the token. This can be useful when the rule to determine the boun-
dary between tokens is inconvenient to express as a regular expression. For example,
consider a pattern to match quoted strings, but where a quotation mark within a string
can be escaped with a backslash:

\" [^"]*\" { /* is the char before close quote a \ ? */
 if(yytext[yyleng-2] == '\\') {
 yyless(yyleng-1); /* return last quote */

yyless() | 137

Download at Boykma.Com

 yymore(); /* append next string */
 } else {
 ... /* process string */
 }
 }

If the quoted string ends with a backslash before the closing quotation mark, it uses
yyless() to push back the closing quote, and it uses yymore() to tell lex to append the
next token to this one (see “yymore()” on page 139). The next token will be the rest
of the quoted string starting with the pushed back quote, so the entire string will end
up in yytext.

A call to yyless() has the same effect as calling unput() with the characters to be pushed
back, but yyless() is often much faster because it can take advantage of the fact that
the characters pushed back are the same ones just fetched from the input.

Another use of yyless() is to reprocess a token using rules for a different start state:

sometoken { BEGIN OTHER_STATE; yyless(0); }

BEGIN tells lex to use another start state, and the call to yyless() pushes back all of the
token’s characters so they can be reread using the new start state. If the new start state
doesn’t enable different patterns that take precedence over the current one,
yyless(0) will cause an infinite loop in the scanner because the same token is repeatedly
recognized and pushed back. (This is similar to the function of REJECT but is consider-
ably faster.) Unlike REJECT, it will loop and match the same pattern unless you use
BEGIN to change what patterns are active.

yylex() and YY_DECL
Normally, yylex is called with no arguments and interacts with the rest of the program
primarily through global variables. The macro YY_DECL declares its calling sequence,
and you can redefine it to add whatever arguments you want.

%{
#define YY_DECL int yylex(int *fruitp)
%}

%%

apple|orange { (*fruitp)++; }

Note that there is no semicolon in YY_DECL, since it is expanded immediately before the
open brace at the beginning of the body of yylex.

When using a reentrant or bison-bridge parser, you can still redefine YY_DECL, but you
must be sure to include the parameters that the reentrant code in the lexer is expecting.
In a bison-bridge scanner, the normal definition is as follows:

#define YY_DECL int yylex (YYSTYPE * yylval_param , yyscan_t yyscanner)

In a plain reentrant scanner there’s no yylval_param.

138 | Chapter 5: A Reference for Flex Specifications

Download at Boykma.Com

yymore()
You can call yymore() from the code associated with a rule to tell lex to append the next
token to this one. For example:

%%
hyper yymore ();
text printf("Token is %s\n", yytext);

If the input string is hypertext, the output will be “Token is hypertext.”

Using yymore() is most often useful where it is inconvenient or impractical to define
token boundaries with regular expressions. See “yyless()” on page 137 for an example.

yyrestart()
You can call yyrestart(f) to make your scanner read from open stdio file f. See “Stdio
File Chaining” on page 123.

yy_scan_string and yy_scan_buffer
These functions prepare to take the scanner’s input from a string or buffer in memory.
See “Input from Strings” on page 124.

YY_USER_ACTION
This macro is expanded just before the code for each scanner action, after yytext and
yyleng are set up. Its most common use is to set bison token locations. See Chapter 8.

yywrap()
When a lexer encounters an end of file, it optionally calls the routine yywrap() to find
out what to do next. If yywrap() returns 0, the scanner continues scanning, while if it
returns 1, the scanner returns a zero token to report the end-of-file. If your lexer doesn’t
use yywrap() to switch files, the option %option noyywrap removes the calls to
yywrap(). The special token <<EOF>> is usually a better way to handle end-of-file
situations.

The standard version of yywrap() in the flex library always returns 1, but if you use
yywrap(), you should replace it with one of your own. If yywrap() returns 0 to indicate
that there is more input, it needs first to adjust yyin to point to a new file, probably
using fopen().

yywrap() | 139

Download at Boykma.Com

Download at Boykma.Com

CHAPTER 6

A Reference for Bison Specifications

In this chapter we describe the syntax of bison programs, along with the various options
and support functions available. POSIX yacc is almost an exact subset of bison, so we
note which parts of bison are extensions beyond what POSIX requires.

After the section on the structure of a bison grammar, the sections in this chapter are
in alphabetical order by feature.

Structure of a Bison Grammar
A bison grammar consists of three sections: the definition section, the rules section,
and the user subroutines section.

 ... definition section ...
 %%
 ... rules section ...
 %%
 ... user subroutines section ...

The sections are separated by lines consisting of two percent signs. The first two sec-
tions are required, although a section may be empty. The third section and the pre-
ceding %% line may be omitted.

Symbols
A bison grammar is constructed from symbols, which are the “words” of the grammar.
Symbols are strings of letters, digits, periods, and underscores that do not start with a
digit. The symbol error is reserved for error recovery; otherwise, bison attaches no fixed
meaning to any symbol. (Since bison defines a C preprocessor symbol for each token,
you also need to be sure token names don’t collide with C reserved words or bison’s
own symbols such as yyparse, or strange errors will ensue.)

Symbols produced by the lexer are called terminal symbols or tokens. Those that are
defined on the left-hand side of rules are called nonterminal symbols or nonterminals.

141

Download at Boykma.Com

Tokens may also be literal quoted characters. (See “Literal Tokens” on page 151.) A
widely followed convention makes token names all uppercase and nonterminals low-
ercase. We follow that convention throughout the book.

Definition Section
The definition section can include a literal block, which is C code copied verbatim to
the beginning of the generated C file, usually containing declaration and #include lines
in %{ %} or %code blocks. There may be %union, %start, %token, %type, %left, %right,
and %nonassoc declarations. (See “%union Declaration” on page 163, “%start Decla-
ration” on page 159, “Tokens” on page 161, “%type Declaration” on page 162, and
“Precedence and Associativity Declarations” on page 154.) The definition section can
also contain comments in the usual C format, surrounded by /* and */. All of these are
optional, so in a very simple parser the definition section may be completely empty.

Rules Section
The rules section contains grammar rules and actions containing C code. See “Ac-
tions” below and “Rules” on page 157 for details.

User Subroutines Section
Bison copies the contents of the user subroutines section verbatim to the C file. This
section typically includes routines called from the actions.

In a large program, it is usually more convenient to put the supporting code in a separate
source file to minimize the amount of material recompiled when you change the
bison file.

Actions
An action is C code executed when bison matches a rule in the grammar. The action
must be a C compound statement, for example:

 date: month '/' day '/' year { printf("date found"); } ;

The action can refer to the values associated with the symbols in the rule by using a
dollar sign followed by a number, with the first symbol after the colon being 1, for
example:

 date: month '/' day '/' year { printf("date %d-%d-%d found", $1, $3, $5); }
 ;

The name $$ refers to the value for the left-hand side (LHS) symbol, the one to the left
of the colon. Symbol values can have different C types. See “Tokens” on page 161,
“%type Declaration” on page 162, and “%union Declaration” on page 163 for details.

142 | Chapter 6: A Reference for Bison Specifications

Download at Boykma.Com

For rules with no action, bison uses a default of the following:

 { $$ = $1; }

If you have a rule with no RHS symbols and the LHS symbol has a declared type, you
must write an action to set its value.

Embedded Actions
Even though bison’s parsing technique allows actions only at the end of a rule, bison
can simulate actions embedded within a rule. If you write an action within a rule, bison
invents a rule with an empty right-hand side and a made-up name on the left, makes
the embedded action into the action for that rule, and replaces the action in the original
rule with the made-up name. For example, these are equivalent:

 thing: A { printf("seen an A"); } B ;

 thing: A fakename B ;
 fakename: /* empty */ { printf("seen an A"); } ;

Although this feature is quite useful, it can have some surprising consequences. The
embedded action turns into a symbol in the rule, so its value (whatever it assigns to
$$) is available to an end-of-rule action like any other symbol:

 thing: A { $$ = 17; } B C
 { printf("%d", $2); }
 ;

This example prints “17”. Either action can refer to the value of A as $1, and the end-
of-rule action can refer to the value of the embedded action as $2 and can refer to the
values of B and C as $3 and $4.

Embedded actions can cause shift/reduce or reduce/reduce conflicts in otherwise ac-
ceptable grammars. For example, this grammar causes no problem:

 %%
 thing: abcd | abcz ;

 abcd: 'A' 'B' 'C' 'D' ;
 abcz: 'A' 'B' 'C' 'Z' ;

But if you add an embedded action, it has a shift/reduce conflict:

 %%
 thing: abcd | abcz ;

 abcd: 'A' 'B' { somefunc(); } 'C' 'D' ;
 abcz: 'A' 'B' 'C' 'Z' ;

In the first case, the parser doesn’t need to decide whether it’s parsing an abcd or an
abcz until it’s seen all four tokens, when it can tell which it’s found. In the second case,
it needs to decide after it parses the B, but at that point it hasn’t seen enough of the
input to decide which rule it is parsing. If the embedded action came after the C, there

Actions | 143

Download at Boykma.Com

would be no problem, since bison could use its one-token lookahead to see whether a
D or a Z is next.

Symbol Types for Embedded Actions
Since embedded actions aren’t associated with grammar symbols, there is no way to
declare the type of the value returned by an embedded action. If you are using %union
and typed symbol values, you have to put the value in angle brackets when referring to
the action’s value, for example, $<type>$ when you set it in the embedded action and
$<type>3 (using the appropriate number) when you refer to it in the action at the end
of the rule. See “Symbol Values” on page 160. If you have a simple parser that uses all
int values, as in the previous example, you don’t need to give a type.

Ambiguity and Conflicts
Bison may report conflicts when it translates a grammar into a parser. In some cases,
the grammar is truly ambiguous; that is, there are two possible parses for a single input
string, and bison cannot handle that. In others, the grammar is unambiguous, but the
standard parsing technique that bison uses is not powerful enough to parse the gram-
mar. The problem in an unambiguous grammar with conflicts is that the parser would
need to look more than one token ahead to decide which of two possible parses to use.
Usually you can rewrite the grammar so that one token of lookahead is enough, but
bison also offers a more powerful technique, GLR, that provides lookahead of unlimited
length.

See “Precedence and Associativity Declarations” on page 154 and Chapter 7 for more
details and suggestions on how to fix these problems, and see “GLR Pars-
ing” on page 230 for details on GLR parsing.

Types of Conflicts
There are two kinds of conflicts that can occur when bison tries to create a parser: shift/
reduce and reduce/reduce.

Shift/Reduce Conflicts
A shift/reduce conflict occurs when there are two possible parses for an input string and
one of the parses completes a rule (the reduce option) and one doesn’t (the shift option).
For example, this grammar has one shift/reduce conflict:

 %%
 e: 'X'
 | e '+' e
 ;

144 | Chapter 6: A Reference for Bison Specifications

Download at Boykma.Com

For the input string X+X+X there are two possible parses, (X+X)+X or X+(X+X). Taking the
reduce option makes the parser use the first parse, and taking the shift option makes
the parser take the second. Bison chooses the shift unless the user puts in operator
precedence declarations. See “Precedence and Associativity Declara-
tions” on page 154 for more information.

Reduce/Reduce Conflicts
A reduce/reduce conflict occurs when the same token could complete two different
rules. For example:

 %%
 prog: proga | progb ;

 proga: 'X' ;
 progb: 'X' ;

An X could either be a proga or be a progb. Most reduce/reduce conflicts are less obvious
than this, but they usually indicate mistakes in the grammar. See Chapter 8 for details
on handling conflicts.

%expect
Occasionally you may have a grammar that has a few conflicts, you are confident that
bison will resolve them the way you want, and it’s too much hassle to rewrite the
grammar to get rid of them. (If/then/else-style constructs are the most common place
this happens.) The declaration %expect N tells bison that your parser should have N
shift/reduce conflicts, so bison reports a compile-time error if the number is different.

You can also use %expect-rr N to tell it how many reduce/reduce conflicts to expect;
unless you are using a GLR parser, do not use this feature since reduce/reduce conflicts
almost always indicate an error in the grammar.

GLR Parsers
Sometimes a grammar is truly too hard for bison’s normal LALR parsing algorithm to
handle. In that case, you can tell bison to create a Generalized LR (GLR) parser instead,
by including a %glr-parser declaration. When a GLR parser encounters a conflict, it
conceptually splits and continues both possible parses in parallel, with each one con-
suming each token. If there are several conflicts, it can create a tree of partial parses,
splitting each time there is a conflict. At the end of the parse, either there will be only
one surviving parse, the rest having been abandoned because they didn’t match the rest
of the input, or, if the grammar is truly ambiguous, there may be several parses, and it
is up to you to decide what to do with them.

See “GLR Parsing” on page 230 for examples and more details.

Ambiguity and Conflicts | 145

Download at Boykma.Com

Bugs in Bison Programs
Bison itself is pretty robust, but there are a few common programming mistakes that
can cause serious failures in your bison parser.

Infinite Recursion
A common error in bison grammars is to create a recursive rule with no way to terminate
the recursion. Bison will diagnose this grammar with the somewhat mysterious “start
symbol xlist does not derive any sentence.”

 %%
 xlist: xlist 'X' ;

Interchanging Precedence
People occasionally try to use %prec to swap the precedence of two tokens:

 %token NUMBER
 %left PLUS
 %left MUL
 %%
 expr : expr PLUS expr %prec MUL
 | expr MUL expr %prec PLUS
 | NUMBER
 ;

This example seems to give PLUS higher precedence than MUL, but in fact it makes them
the same. The precedence mechanism resolves shift/reduce conflicts by comparing the
precedence of the token to be shifted to the precedence of the rule. In this case, there
are several conflicts. A typical conflict arises when the parser has seen “expr PLUS expr”
and the next token is a MUL. In the absence of a %prec, the rule would have the precedence
of PLUS, which is lower than that of MUL, and bison takes the shift. But with %prec, both
the rule and the token have the precedence of MUL, so it reduces because MUL is left
associative.

One possibility would be to introduce pseudotokens, for example, XPLUS and XMUL, with
their own precedence levels to use with %prec. A far better solution is to rewrite the
grammar to say what it means, in this case exchanging the %left lines (see “Precedence
and Associativity Declarations” on page 154).

Embedded Actions
When you write an action in the middle of a rule rather than at the end, bison has to
invent an anonymous rule to trigger the embedded action. Occasionally the anonymous
rule causes unexpected shift/reduce conflicts. See “Actions” on page 142 for more
details.

146 | Chapter 6: A Reference for Bison Specifications

Download at Boykma.Com

C++ Parsers
Bison can produce a C++ parsers. If your bison file is called comp.yxx, it will create the
C++ source comp.tab.cxx and header comp.tab.hxx files. (You can change the output
filenames with the -o flag, perhaps as -o comp.c++, which will also rename the header
to comp.h++.) It also creates the header files stack.hh, location.hh, and position.hh,
which define three classes used in the parser. The contents of these three files are always
the same unless you use -p or %name-prefix to change the namespace of the parser from
“yy” to something else.

Bison defines a class called yy::parser (unless you change its name) with a main
parse routine and some minor routines for error reporting and debugging. See “C++
Parsers” on page 234 for more details.

%code Blocks
Bison has always accepted C code in the declaration section surrounded by %{ ...
%} brackets. Sometimes the code has to go in a particular place in the generated pro-
gram, before or after particular parts of the standard parser skeleton code. The %code
directive allows more specific placement of the code.

%code [place] {
 ... code here ...
}

The optional place, which the bison manual calls the qualifier, says where in the gen-
erated program to put the code. Current places in C language programs are top,
provides, and requires. They put the code at the top of the file, before the definitions
of YYSTYPE and YYLTYPE, and after those definitions. This feature is considered experi-
mental, so the places are likely to change; therefore, check the current bison manual to
see what the current options are. The use of %code without a place will definitely remain
and is intended to replace %{ %}.

End Marker
Each bison grammar includes a pseudotoken called the end marker, which marks the
end of input. In bison listings, the end marker is usually indicated as $end.

The lexer must return a zero token to indicate the end of input.

Error Token and Error Recovery
Bison parsers will always detect syntax errors as early as possible, that is, as soon as
they read a token for which there is no potential parse. When bison detects a syntax

Error Token and Error Recovery | 147

Download at Boykma.Com

error, that is, when it receives an input token that it cannot parse, it attempts to recover
from the error using this procedure:

1. It calls yyerror(“syntax error”). This usually reports the error to the user.

2. It discards any partially parsed rules until it returns to a state in which it could shift
the special error symbol.

3. It resumes parsing, starting by shifting an error.

4. If another error occurs before three tokens have been shifted successfully, bison
does not report another error but returns to step 2.

See Chapter 8 for more details on error recovery. Also, see “yyerror()” on page 167,
“YYRECOVERING()” on page 171, “yyclearin” on page 169, and “yyer-
rok” on page 169 for details on features that help control error recovery.

%destructor
When bison is trying to recover from a parse error, it discards symbols and their values
from the parse stack. If the value is a pointer to dynamically allocated memory, or
otherwise needs special treatment when it’s discarded, the %destructor directive lets
you get control when particular symbols, or symbols with values of particular types,
are deleted. It also will handle the value of the start symbol after a successful parse. See
Chapter 8 for more details.

Inherited Attributes ($0)
Bison symbol values can act as inherited attributes or synthesized attributes. (What bison
calls values are usually referred to in compiler literature as attributes.) The usual syn-
thesized attributes start as token values, which are the leaves of the parse tree. Infor-
mation conceptually moves up the parse tree each time a rule is reduced, and each
action synthesizes the value of its resulting symbol ($$) from the values of the symbols
on the right-hand side of the rule.

Sometimes you need to pass information the other way, from the root of the parse tree
toward the leaves. Consider this example:

 declaration: class type namelist ;

 class: GLOBAL { $$ = 1; }
 | LOCAL { $$ = 2; }
 ;

 type: REAL { $$ = 1; }
 | INTEGER { $$ = 2; }
 ;

 namelist: NAME { mksymbol($0, $-1, $1); }

148 | Chapter 6: A Reference for Bison Specifications

Download at Boykma.Com

 | namelist NAME { mksymbol($0, $-1, $2); }
 ;

It would be useful to have the class and type available in the actions for namelist, both
for error checking and for entering into the symbol table. Bison makes this possible by
allowing access to symbols on its internal stack to the left of the current rule, via $0,
$-1, etc. In the example, the $0 in the call to mksymbol() refers to the value of the type,
which is stacked just before the symbol(s) for the namelist production, and it will have
the value 1 or 2 depending on whether the type was REAL or INTEGER. $-1 refers to the
class, which will have the value 1 or 2 if the class was GLOBAL or LOCAL.

Although inherited attributes can be useful, they can also be a source of hard-to-find
bugs. An action that uses inherited attributes has to take into account every place in
the grammar where its rule is used. In this example, if you changed the grammar to use
a namelist somewhere else, you’d have to make sure that, in the new place where the
namelist occurs, appropriate symbols precede it so that $0 and $-1 will get the right
values:

 declaration: STRING namelist ; /* won't work! */

Inherited attributes can occasionally be very useful, particularly for syntactically com-
plex constructs such as C language variable declarations. But it’s usually safer and easier
to use a global variable for the value that would have been fetched from a synthesized
attribute. Or it’s often nearly as easy to use synthesized attributes. In the previous
example, the namelist rules could create a linked list of references to the names to be
declared and return a pointer to that list as its value. The action for declaration could
take the class, type, and namelist values and at that point assign the class and type to
the names in the namelist.

Symbol Types for Inherited Attributes
When you use the value of an inherited attribute, the usual value declaration techniques
(e.g., %type) don’t work. Since the symbol corresponding to the value doesn’t appear
in the rule, bison cannot tell what the correct type is. You have to supply type names
in the action code using an explicit type. In the previous example, if the types of
class and type were cval and tval, the last two lines would actually read like this:

 namelist: NAME { mksymbol($<tval>0, $<cval>-1, $1); }
 | namelist NAME { mksymbol($<tval>0, $<cval>-1, $2); }

See “Symbol Values” on page 160 for additional information.

%initial-action
If you need to initialize something when your parser starts up, you can use %initial-
action { some-code } to tell bison to copy some-code near the beginning of yyparse.
The place where the code is copied comes after the standard initialization code, so you

%initial-action | 149

Download at Boykma.Com

cannot usefully put variable declarations in the code. (They’ll be accepted, but they
won’t be accessible in your actions.) If you need to define your own parse-time varia-
bles, you have to either use static globals or pass them as arguments via %parse-param.

Lexical Feedback
Parsers can sometimes feed information back to the lexer to handle otherwise difficult
situations. For example, consider an input syntax like this:

 message (any characters)

where in this particular context the parentheses are acting as string quotes. You can’t
just decide to parse a string any time you see an open parenthesis, because open pa-
rentheses might be used differently elsewhere in the grammar.

A straightforward way to handle this situation is to feed context information from the
parser back to the lexer, for example, set a flag in the parser when a context-dependent
construct is expected:

 /* parser */
 %{
 int parenstring = 0;
 }%
 . . .
 %%
 statement: MESSAGE { parenstring = 1; } '(' STRING ')' ;

and look for it in the lexer:

 %{
 extern int parenstring;
 %}
 %s PSTRING
 %%
 . . .
 "message" return MESSAGE;
 "(" { if(parenstring)
 BEGIN PSTRING;
 return '(';
 }
 <PSTRING>[^)]* {
 yylval.svalue = strdup(yytext); /* pass string to parser */
 BEGIN INITIAL;
 return STRING;
 }

This code is not bulletproof, because if there is some other rule that starts with
MESSAGE, bison might have to use a lookahead token, in which case the in-line action
wouldn’t be executed until after the open parenthesis had been scanned. In most real
cases that isn’t a problem because the syntax tends to be simple. If the parser does error
recovery, the error code needs to reset parenstring.

150 | Chapter 6: A Reference for Bison Specifications

Download at Boykma.Com

In this example, you could also handle the special case in the lexer by setting
parenstring in the lexer, for example:

 "message(" { parenstring = 1; return MESSAGE; }

This could cause problems, however, if the token MESSAGE is used elsewhere in the
grammar and is not always followed by a parenthesized string. You usually have the
choice of doing lexical feedback entirely in the lexer or doing it partly in the parser,
with the best solution depending on how complex the grammar is. If the grammar is
simple and tokens do not appear in multiple contexts, you can do all of your lexical
hackery in the lexer, while if the grammar is more complex, it is easier to identify the
special situations in the parser.

This approach can be taken to extremes—I wrote a complete Fortran 77 parser in yacc,
bison’s predecessor (but, not lex, since tokenizing Fortran is just too strange), and the
parser needed to feed a dozen special context states back to the lexer. It was messy, but
it was far easier than writing the whole parser and lexer in C.

Literal Block
The literal block in the definition section is bracketed by the lines %{ and %}.

 %{
 ... C code and declarations ...
 %}

The contents of the literal block are copied verbatim to the generated C source file near
the beginning, before the beginning of yyparse(). The literal block usually contains
declarations of variables and functions used by code in the rules section, as well as
#include lines for any necessary header files.

Bison also provides an experimental %code POS { ... } where POS is a keyword to
suggest where in the generated parser the code should go. See “%code
Blocks” on page 147 for current details.

Literal Tokens
Bison treats a character in single quotes as a token. In this example,

 expr: '(' expr ')' ;

the open and close parentheses are literal tokens. The token number of a literal token
is the numeric value in the local character set, usually ASCII, and is the same as the C
value of the quoted character.

The lexer usually generates these tokens from the corresponding single characters in
the input, but as with any other token, the correspondence between the input characters
and the generated tokens is entirely up to the lexer. A common technique is to have the

Literal Tokens | 151

Download at Boykma.Com

lexer treat all otherwise unrecognized characters as literal tokens. For example, in a flex
scanner:

 . return yytext[0];

this covers all of the single-character operators in a language and lets bison catch all
unrecognized characters in the input with parse errors.

Bison also allows you to declare strings as aliases for tokens, for example:

 %token NE "!="
 %%
 ...
 exp: exp "!=" exp ;

This defines the token NE and lets you use NE and != interchangeably in the parser. The
lexer must still return the internal token value for NE when the token is read, not a string.

Locations
To aid in error reporting, bison offers locations, a feature to track the source line and
column range for every symbol in the parser. Locations are enabled explicitly with
%locations or implicitly by referring to a location in the action code. The lexer has to
track the current line and column and set the location range for each token in yylloc
before returning the token. (Flex lexers will automatically track the line number, but
tracking the column number is up to you.) A default rule in the parser invoked every
time a rule is reduced sets the location range of the LHS symbol from the beginning
line and column of the first RHS symbol to the ending line and column of the last RHS
symbol.

Within action code, the location for each symbol is referred to as @$ for the LHS and
as @1, and so forth, for the RHS symbols. Each location is actually a structure, with
references to fields like @3.first_column.

Locations are overkill for the error-reporting needs of many, perhaps most, parsers.
Parse errors still just report the single token where the parse failed, so the only time a
location range is visible to the user is if your action code reports it. The most likely
place to use them is in an integrated development environment that could use them to
highlight the source code responsible for semantic errors. For some examples, see
Chapter 8.

%parse-param
Normally, you call yyparse() with no arguments. If the parser needs to import infor-
mation from the surrounding program, it can use global variables, or you can add
parameters to its definition:

 %parse-param {char *modulename}
 %parse-param {int intensity}

152 | Chapter 6: A Reference for Bison Specifications

Download at Boykma.Com

This allows you to call yyparse("mymodule", 42) and refer to modulename and
intensity in action code in the parser. Note that there are no semicolons and no trailing
punctuation, since the parameters are just placed between the parentheses in the def-
inition of yyparse.

In normal parsers, there’s little reason to use parse parameters rather than global var-
iables, but if you generate a pure parser that can be called multiple times, either recur-
sively or in multiple threads, parameters are the easiest way to provide the parameters
to each instance of the parser.

Portability of Bison Parsers
There are two levels at which you can port a parser: the original bison grammar or the
generated C source file.

Porting Bison Grammars
For the most part, you can write bison parsers and expect anyone’s version of bison to
handle them, since the core features bison have changed very little in the past 15 years.
If you know that your parser requires features added in recent years, you can declare
the minimum version of bison needed to compile it:

 %require "2.4"

Porting Generated C Parsers
Bison parsers are in general very portable among reasonably modern C or C++ imple-
mentations, C89 or later, or ANSI/ISO C++.

Libraries
The only routines in the bison library are usually main() and yyerror(). Any nontrivial
parser has its own version of those two routines, so the library usually isn’t necessary.

Character Codes
Moving a generated parser between machines that use different character codes can be
tricky. In particular, you must avoid literal tokens like '0' since the parser uses the
character code as an index into internal tables; so, a parser generated on an ASCII
machine where the code for '0' is 48 will fail on an EBCDIC machine where the code
is 240.

Bison assigns its own numeric values to symbolic tokens, so a parser that uses only
symbolic tokens should port successfully.

Portability of Bison Parsers | 153

Download at Boykma.Com

Precedence and Associativity Declarations
Normally, all bison grammars have to be unambiguous. That is, there is only one pos-
sible way to parse any legal input using the rules in the grammar.

Sometimes, an ambiguous grammar is easier to use. Ambiguous grammars cause con-
flicts, situations where there are two possible parses and hence two different ways that
bison can process a token. When bison processes an ambiguous grammar, it uses de-
fault rules to decide which way to parse an ambiguous sequence. Often these rules do
not produce the desired result, so bison includes operator declarations that let you
change the way it handles shift/reduce conflicts that result from ambiguous grammars.
(See also “Ambiguity and Conflicts” on page 144.)

Most programming languages have complicated rules that control the interpretation
of arithmetic expressions. For example, the C expression:

 a = b = c + d / e / f

is treated as follows:

 a = (b = (c + ((d / e) / f))))

The rules for determining what operands group with which operators are known as
precedence and associativity.

Precedence
Precedence assigns each operator a precedence “level.” Operators at higher levels bind
more tightly; for example, if * has higher precedence than +, A+B*C is treated as
A+(B*C), while D*E+F is (D*E)+F.

Associativity
Associativity controls how the grammar groups expressions using the same operator or
different operators with the same precedence. They can group from the left, from the
right, or not at all. If - were left associative, the expression A-B-C would mean (A-B)-
C, while if it were right associative, it would mean A-(B-C).

Some operators such as Fortran .GE. are not associative either way; that is, A .GE. B .GE.
C is not a valid expression.

Precedence Declarations
Precedence declarations appear in the definition section. The possible declarations are
%left, %right, and %nonassoc. The %left and %right declarations make an operator
left or right associative, respectively. You declare nonassociative operators with
%nonassoc.

154 | Chapter 6: A Reference for Bison Specifications

Download at Boykma.Com

Operators are declared in increasing order of precedence. All operators declared on the
same line are at the same precedence level. For example, a Fortran grammar might
include the following:

 %left '+' '-'
 %left '*' '/'
 %right POW

The lowest precedence operators here are + and -, the middle predecence operators are
* and /, and the highest is POW, which represents the ** power operator.

Using Precedence and Associativity to Resolve Conflicts
Every token in a grammar can have a precedence and an associativity assigned by a
precedence declaration. Every rule can also have a precedence and an associativity,
which is taken from a %prec clause in the rule or, failing that, the rightmost token in
the rule that has a precedence assigned.

Whenever there is a shift/reduce conflict, bison compares the precedence of the token
that might be shifted to that of the rule that might be reduced. It shifts if the token’s
precedence is higher or reduces if the rule’s precedence is higher. If both have the same
precedence, bison checks the associativity. If they are left associative, it reduces; if they
are right associative, it shifts; and if they are nonassociative, bison generates an error.

Typical Uses of Precedence
Although you can in theory use precedence to resolve any kind of shift/reduce conflict,
you should use precedence only for a few well-understood situations and rewrite the
grammar otherwise. Precedence declarations were designed to handle expression gram-
mars, with large numbers of rules like this:

 expr OP expr

Expression grammars are almost always written using precedence.

The only other common use is if/then/else, where you can resolve the “dangling else”
problem more easily with precedence than by rewriting the grammar.

See Chapter 7 for details. Also see “Bugs in Bison Programs” on page 146 for a common
pitfall using %prec.

Recursive Rules
To parse a list of items of indefinite length, you write a recursive rule, one that is defined
in terms of itself. For example, this parses a possibly empty list of numbers:

 numberlist: /* empty */
 | numberlist NUMBER
 ;

Recursive Rules | 155

Download at Boykma.Com

The details of the recursive rule vary depending on the exact syntax to be parsed. The
next example parses a nonempty list of expressions separated by commas, with the
symbol expr being defined elsewhere in the grammar:

 exprlist: expr
 | exprlist ',' expr
 ;

It’s also possible to have mutually recursive rules that refer to each other:

 exp: term
 | term '+' term
 ;
 term: '(' exp ')'
 | VARIABLE
 ;

Any recursive rule and each rule in a group of mutually recursive rules must have at
least one nonrecursive alternative (one that does not refer to itself). Otherwise, there
is no way to terminate the string that it matches, which is an error.

Left and Right Recursion
When you write a recursive rule, you can put the recursive reference at the left end or
the right end of the right-hand side of the rule, for example:

 exprlist: exprlist ',' expr ; /* left recursion */

 exprlist: expr ',' exprlist ; /* right recursion */

In most cases, you can write the grammar either way. Bison handles left recursion much
more efficiently than right recursion. This is because its internal stack keeps track of
all symbols seen so far for all partially parsed rules. If you use the right-recursive version
of exprlist and have an expression with 10 expressions in it, by the time the 10th
expression is read, there will be 20 entries on the stack: an expr and a comma for each
of the 10 expressions. When the list ends, all of the nested exprlists will be reduced,
starting from right to left. On the other hand, if you use the left-recursive version, the
exprlist rule is reduced after each expr, so the list will never have more than three
entries on the internal stack.

A 10-element expression list poses no problems in a parser, but grammars often parse
lists that are hundreds or thousands of items long, particularly when a program is
defined as a list of statements:

 %start program
 %%
 program: statementlist ;

 statementlist : statement
 | statementlist ';' statement
 ;
 statement: . . .

156 | Chapter 6: A Reference for Bison Specifications

Download at Boykma.Com

In this case, a 5,000-statement program is parsed as a 10,000-element list of statements
and semicolons, and a right-recursive list of 10,000 elements is too large for most bison
parsers.

Right-recursive grammars can be useful for a list of items that you know will be short
and that you want to make into a linked list of values:

 thinglist: THING { $$ = $1; }
 | THING thinglist { $1->next = $2; $$ = $1; }
 ;

With a left-recursive grammar, either you end up with the list linked in reverse order
with a reversal step at the end or you need extra code to search for the end of the list
at each stage in order to add the next thing to the end.

You can control the size of the parser stack by defining YYINITDEPTH, which is the initial
stack size that is normally 200, and YYMAXDEPTH, which is the maximum stack size that
is normally 10,000. For example:

%{
#define YYMAXDEPTH 50000
%}

Each stack entry is the size of a semantic value (the largest size in the %union entries)
plus two bytes for the token number plus, if you are using locations, 16 bytes for the
location. On a workstation with a gigabyte of virtual memory, a stack of 100,000 entries
would be a manageable 2 or 3 megabytes, but on a smaller embedded system, you’d
probably want to rewrite your grammar to limit the stack size.

Rules
A bison grammar consists of a set of rules. Each rule starts with a nonterminal symbol
and a colon and is followed by a possibly empty list of symbols, literal tokens, and
actions. Rules by convention end with a semicolon, although the semicolon is techni-
cally optional. For example,

 date: month '/' day '/' year ;

says that a date is a month, a slash, a day, another slash, and a year. (The symbols
month, day, and year must be defined elsewhere in the grammar.) The initial symbol
and colon are called the left-hand side (LHS) of the rule, and the rest of the rule is the
right-hand side (RHS). The right-hand side may be empty.

If several consecutive rules in a grammar have the same LHS, the second and subsequent
rules may start with a vertical bar rather than the name and the colon. These two
fragments are equivalent:

 declaration: EXTERNAL name ;
 declaration: ARRAY name '(' size ')' ;

Rules | 157

Download at Boykma.Com

 declaration: EXTERNAL name
 | ARRAY name '(' size ')' ;

The form with the vertical bar is better style. The semicolon must be omitted before a
vertical bar. Multiple rules with the same LHS need not occur together. See the SQL
grammar in Chapter 4 where there are multiple rules defining the term sql throughout
the grammar.

An action is a C compound statement that is executed whenever the parser reaches the
point in the grammar where the action occurs:

 date: month '/' day '/' year
 { printf("Date recognized.\n"); }
 ;

The C code in actions may have some special constructs starting with $ or @ that are
specially treated by bison. (See “Actions” on page 142 and “Locations” on page 152
for details.) Actions that occur anywhere except at the end of a rule are treated specially.
(See “Embedded Actions” on page 143 for details.)

A rule may have an explicit precedence at the end:

 expr: expr '*' expr
 | expr '-' expr
 | '-' expr %prec UMINUS ;

The precedence is used only to resolve otherwise ambiguous parses. See “Precedence
and Associativity Declarations” on page 154 for details. In a GLR parser, a rule can also
have a %dprec precedence to resolve ambiguous parses.

Special Characters
Since bison deals with symbolic tokens rather than literal text, its input character set
is considerably simpler than lex’s. Here is a list of the special characters that it uses:

%
A line with two percent signs separates the parts of a bison grammar (see “Structure
of a Bison Grammar” on page 141). All of the declarations in the definition section
start with %, including %{ %}, %start, %token, %type, %left, %right, %nonassoc, and
%union. See “Literal Block” on page 151, “%start Declaration” on page 159,
“%type Declaration” on page 162, “Precedence and Associativity Declara-
tions” on page 154, and “%union Declaration” on page 163.

$
In actions, a dollar sign introduces a value reference, for example, $3 for the value
of the third symbol in the rule’s right-hand side. See “Symbol Values”
on page 160.

@
In actions, an @ sign introduces a location reference, such as @2 for the location of
the second symbol in the RHS.

158 | Chapter 6: A Reference for Bison Specifications

Download at Boykma.Com

'
Literal tokens are enclosed in single quotes, for example, 'Z'. See “Literal To-
kens” on page 151.

"
Bison lets you declare quoted strings as parser aliases for tokens. See “Literal To-
kens” on page 151.

< >
In a value reference in an action, you can override the value’s default type by en-
closing the type name in angle brackets, for example, $<xtype>3. See “Declaring
Symbol Types” on page 160.

{ }
The C code in actions is enclosed in curly braces. (See “Actions” on page 142.) C
code in the literal block declarations section is enclosed in %{ and %}. See “Literal
Block” on page 151.

;
Each rule in the rules section should end with a semicolon, except those that are
immediately followed by a rule that starts with a vertical bar. The semicolons are
optional, but they are always a good idea. See “Rules” on page 157.

|
When two consecutive rules have the same left-hand side, the second rule may
replace the symbol and colon with a vertical bar. See “Rules” on page 157.

:
In each rule, a colon follows the symbol on the rule’s left-hand side. See
“Rules” on page 157.

_
Symbols may include underscores along with letters, digits, and periods.

.
Symbols may include periods along with letters, digits, and underscores. This can
cause trouble because C identifiers cannot include periods. In particular, do not
use tokens whose names contain periods, since the token names are all #define’d
as C preprocessor symbols.

%start Declaration
Normally, the start rule, the one that the parser starts trying to parse, is the one named
in the first rule. If you want to start with some other rule, in the declaration section you
can write the following:

 %start somename

to start with rule somename.

%start Declaration | 159

Download at Boykma.Com

In most cases, the clearest way to present the grammar is top-down, with the start rule
first, so no %start is needed.

Symbol Values
Every symbol in a bison parser, both tokens and nonterminals, can have a value asso-
ciated with it. If the token were NUMBER, the value might be the particular number; if it
were STRING, the value might be a pointer to a copy of the string; and if it were
SYMBOL, the value might be a pointer to an entry in the symbol table that describes the
symbol. Each of these kinds of value corresponds to a different C type: int or double
for the number, char * for the string, and a pointer to a structure for the symbol. Bison
makes it easy to assign types to symbols so that it automatically uses the correct type
for each symbol.

Declaring Symbol Types
Internally, bison declares each value as a C union that includes all of the types. You list
all of the types in %union declarations. Bison turns them into a typedef for a union type
called YYSTYPE. Then for each symbol whose value is set or used in action code, you
have to declare its type. Use %type for nonterminals. Use %token, %left, %right, or
%nonassoc for tokens to give the name of the union field corresponding to its type.

Then, whenever you refer to a value using $$, $1, etc., bison automatically uses the
appropriate field of the union.

Bison doesn’t understand any C, so any symbol typing mistakes you make, such as
using a type name that isn’t in the union or using a field in a way that C doesn’t allow,
will cause errors in the generated C program.

Explicit Symbol Types
Bison allows you to declare an explicit type for a symbol value reference by putting the
type name in angle brackets between the dollar sign and the symbol number or between
the two dollar signs, for example, $<xxx>3 or $<zzz>$.

The feature is rarely used, since in nearly all cases it is easier and more readable to
declare the symbols. The most plausible uses are when referring to inherited attributes
and when setting and referring to the value returned by an embedded action. See
“Inherited Attributes ($0)” on page 148 and “Actions” on page 142 for details.

160 | Chapter 6: A Reference for Bison Specifications

Download at Boykma.Com

Tokens
Tokens or terminal symbols are symbols that the lexer passes to the parser. Whenever
a bison parser needs another token, it calls yylex(), which returns the next token from
the input. At the end of input, yylex() returns zero.

Tokens may be either symbols defined by %token or individual characters in single
quotes. (See “Literal Tokens” on page 151.) All symbols used as tokens must be defined
explicitly in the definition section, for example:

 %token UP DOWN LEFT RIGHT

Tokens can also be declared by %left, %right, or %nonassoc declarations, each of which
has exactly the same syntax options as %token has. See “Precedence and Associativity
Declarations” on page 154.

Token Numbers
Within the lexer and parser, tokens are identified by small integers. The token number
of a literal token is the numeric value in the local character set, usually ASCII, and is
the same as the C value of the quoted character.

Symbolic tokens usually have values assigned by bison, which gives them numbers
higher than any possible character’s code, so they will not conflict with any literal
tokens. You can assign token numbers yourself by following the token name by its
number in %token:

 %token UP 50 DOWN 60 LEFT 17 RIGHT 25

It is an error to assign two tokens the same number. In most cases it is easier and more
reliable to let bison choose its own token numbers.

The lexer needs to know the token numbers in order to return the appropriate values
to the parser. For literal tokens, it uses the corresponding C character constant. For
symbolic tokens, you can tell bison with the -d command-line flag to create a C header
file with definitions of all the token numbers. If you #include that header file in your
lexer, you can use the symbols, for example, UP, DOWN, LEFT, and RIGHT, in its C code.
The header file is normally called xxx.tab.h if your source file was xxx.y, or you can
rename it with the %defines declaration or the --defines=filename command-line
option.

 %defines "xxxsyms.h"

Token Values
Each symbol in a bison parser can have an associated value. (See “Symbol Val-
ues” on page 160.) Since tokens can have values, you need to set the values as the lexer
returns tokens to the parser. The token value is always stored in the variable yylval. In

Tokens | 161

Download at Boykma.Com

the simplest parsers, yylval is a plain int variable, and you might set it like this in a
flex scanner:

 [0-9]+ { yylval = atoi(yytext); return NUMBER; }

In most cases, though, different symbols have different value types. See “%union Dec-
laration” on page 163, “Symbol Values” on page 160, and “%type Declaration” below.

In the parser you must declare the value types of all tokens that have values. Put the
name of the appropriate union tag in angle brackets in the %token or precedence dec-
laration. You might define your values types like this:

 %union {
 enum optype opval;
 double dval;
 }

 %nonassoc <opval> RELOP
 %token <dval> REAL

 %union { char *sval; }
 . . .
 %token <sval> STRING

In this case RELOP might be a relational operator such as == or >, and the token value
says which operator it is.

You set the appropriate field of yylval when you return the token. In this case, you’d
do something like this in lex:

 %{
 #include "parser.tab.h"
 %}
 . . .
 [0-9]+\.[0-9]* { yylval.dval = atof(yytext); return REAL; }
 \"[^"]*\" { yylval.sval = strdup(yytext); return STRING; }
 "==" { yyval.opval = OPEQUAL; return RELOP; }

The value for REAL is a double, so it goes into yylval.dval, while the value for STRING is
a char *, so it goes into yylval.sval.

%type Declaration
You declare the types of nonterminals using %type. Each declaration has the following
form:

 %type <type> name, name, . . .

Each type name must have been defined by a %union. (See “%union Declara-
tion” on page 163.) Each name is the name of a nonterminal symbol. See “Declaring
Symbol Types” on page 160 for details and an example.

162 | Chapter 6: A Reference for Bison Specifications

Download at Boykma.Com

Use %type to declare nonterminals. To declare tokens, you can also use %token, %left,
%right, or %nonassoc. See “Tokens” on page 161 and “Precedence and Associativity
Declarations” on page 154 for details.

%union Declaration
The %union declaration identifies all of the possible C types that a symbol value can
have. (See “Symbol Values” on page 160.) The declaration takes this form:

 %union {
 ... field declarations...
 }

The field declarations are copied verbatim into a C union declaration of the type
YYSTYPE in the output file. Bison does not check to see whether the contents of the
%union are valid C. If you have more than one %union declaration, their contents are
concatenated to create the C or C++ union declaration.

In the absence of a %union declaration, bison defines YYSTYPE to be int, so all of the
symbol values are integers.

You associate the types declared in %union with particular symbols using the %type
declaration.

Bison puts the generated C union declaration both in the generated C file and in the
optional generated header file (called name.tab.h unless you tell it otherwise), so you
can use YYSTYPE in other source files by including the generated header file. Conversely,
you can put your own declaration of YYSTYPE in an include file that you reference with
#include in the definition section. In this case, there must be at least one %type or other
declaration that specifies a symbol type to warn bison that you are using explicit symbol
types.

Variant and Multiple Grammars
You may want to have parsers for two partially or entirely different grammars in the
same program. For example, an interactive debugging interpreter might have one parser
for the programming language and another for debugger commands. A one-pass C
compiler might need one parser for the preprocessor syntax and another for the C
language itself.

There are two ways to handle two grammars in one program: combine them into a
single parser or put two complete parsers into the program.

Combined Parsers
If you have several similar grammars, you can combine them into one by adding a new
start rule that depends on the first token read. For example:

Variant and Multiple Grammars | 163

Download at Boykma.Com

 %token CSTART PPSTART
 %%
 combined: CSTART cgrammar
 | PPSTART ppgrammar
 ;

 cgrammar: . . .

 ppgrammar: . . .

In this case, if the first token is CSTART, it parses the grammar whose start rule is
cgrammar, while if the first token is PPSTART, it parses the grammar whose start rule is
ppgrammar.

You also need to put code in the lexer that returns the appropriate special token the
first time that the parser asks the lexer for a token:

 %%
 %{
 extern first_tok;

 if(first_tok) {
 int holdtok = first_tok;

 first_tok = 0;
 return holdtok;
 }
 %}
 . . . <the rest of the lexer>

In this case, you set first_tok to the appropriate token before calling yyparse().

One advantage of this approach is that the program is smaller than it would be with
multiple parsers, since there is only one copy of the parsing code. Another is that if you
are parsing related grammars, for example, C preprocessor expressions and C itself,
you should be able to share some parts of the grammar. The disadvantages are that you
cannot call one parser while the other is active unless you create a pure parser and that
you have to use different symbols in the two grammars except where they deliberately
share rules, and the possibilities for hard-to-find errors are rife if you accidentally use
the same symbol in the two grammars.

In practice, this approach is useful when you want to parse slightly different versions
of a single language, for example, a full language that is compiled and an interactive
subset that you interpret in a debugger. If one language is actually a subset of the other,
a better approach would be to use a single parser for both, check in the action code in
the rules excluded from the subset for which version is being parsed, and if it’s the
subset, report an error to the user.

164 | Chapter 6: A Reference for Bison Specifications

Download at Boykma.Com

Multiple Parsers
The other approach is to include two complete parsers in a single program. Every bison
parser normally has the same entry point, yyparse(), and calls the same lexer,
yylex(), which uses the same token value variable yylval. Also, the parse tables and
parser stack are in global variables with names like yyact and yyv. If you just translate
two grammars and compile and link the two resulting files, you get a long list of multiply
defined symbols. The trick is to change the names that bison uses for its functions and
variables.

Using %name-prefix or the -p Flag
You can use a declaration in the bison source code to change the prefix used on the
names in the parser generated by bison.

 %name-prefix "pdq"

This produces a parser with the entry point pdqparse(), which calls the lexer
pdqlex(), and so forth.

Specifically, the names affected are yyparse(), yylex(), yyerror(), yylval, yychar, and
yydebug. (The variable yychar holds the most recently read token, which is sometimes
useful when printing error messages.) The other variables used in the parser may be
renamed or may be made static or auto; in any event, they are guaranteed not to collide.
There is also a -p flag to specify the prefix on the command line rather than in the source
file, and there is a a -b flag to specify the prefix of the generated C file; for example,

 bison -d -p pdq -b pref mygram.y

would produce pref.tab.c and pref.tab.h with a parser whose entry point is pdqparse.

You have to provide properly named versions of yyerror() and yylex().

Lexers for Multiple Parsers
If you use a flex lexer with your multiple parsers, you need to make adjustments to the
lexer to correspond to the changes to the parser. (See “Multiple Lexers in One Pro-
gram” on page 127.) You will usually want to use a combined lexer with a combined
parser and use multiple lexers with multiple parsers.

Pure Parsers
A slightly different problem is that of recursive parsing, calling yyparse() a second time
while the original call to yyparse() is still active. This can be an issue when you have
combined parsers. If you have a combined C language and C preprocessor parser, you
can call yyparse() in C language mode once to parse the whole program, and you can
call it recursively whenever you see a #if to parse a preprocessor expression.

Multiple Parsers | 165

Download at Boykma.Com

Pure parsers are also useful in threaded programs, where each thread might be parsing
input from a separate source. See “Pure Scanners and Parsers” on page 209 in Chap-
ter 9 for the details on pure parsers.

y.output Files
Bison can create a log file, traditionally named y.output or now more often
name.output, that shows all of the states in the parser and the transitions from one state
to another. Use the --report=all flag to generate a log file.

Here’s part of the log for the bison grammar in Chapter 1:

state 3

 10 term: NUMBER .

 $default reduce using rule 10 (term)

state 4

 11 term: ABS . term

 NUMBER shift, and go to state 3
 ABS shift, and go to state 4

 term go to state 9

state 5

 2 calclist: calclist calc . EOL

 EOL shift, and go to state 10

The dot in each state shows how far the parser has gotten parsing a rule when it gets
to that state. When the parser is in state 4, for example, if the parser sees a NUMBER token,
it shifts the NUMBER onto the stack and switches to state 3. If it sees an ABS, it shifts and
switches back to state 4, and any other token is an error. If a subsequent reduction
returns to this state with a term on the top of the stack, it switches to state 9. In
state 3, it always reduces rule 10. (Rules are numbered in the order they appear in the
input file.) After the reduction, the NUMBER is replaced on the parse stack by a term, and
the parser pops back to state 4, at which point the term makes it go to state 9.

When there are conflicts, the states with conflicts show the conflicting shift and reduce
actions.

State 19 conflicts: 3 shift/reduce

state 19

 5 exp: exp . ADD exp
 5 | exp ADD exp .

166 | Chapter 6: A Reference for Bison Specifications

Download at Boykma.Com

 6 | exp . SUB factor
 7 | exp . ABS factor

 ADD shift, and go to state 12
 SUB shift, and go to state 13
 ABS shift, and go to state 14

 ADD [reduce using rule 5 (exp)]
 SUB [reduce using rule 5 (exp)]
 ABS [reduce using rule 5 (exp)]
 $default reduce using rule 5 (exp)

In this case, there is a shift/reduce conflict when bison sees a plus sign. You could fix
it either by rewriting the grammar or by adding an operator declaration for the plus
sign. See “Precedence and Associativity Declarations” on page 154.

Bison Library
Bison inherits a library of helpful routines from its predecessor yacc. You can include
the library by giving the -ly flag at the end of the cc command line. The library contains
main() and yyerror().

main()
The library has a minimal main program that is sometimes useful for quickie programs
and for testing. It’s so simple we can reproduce it here:

 main(ac, av)
 {
 yyparse();
 return 0;
 }

As with any library routine, you can provide your own main(). In nearly any useful
application you will want to provide a main() that accepts command-line arguments
and flags, opens files, and checks for errors.

yyerror()
Bison also provides a simple error-reporting routine. It’s also simple enough to list in
its entirety:

 yyerror(char *errmsg)
 {
 fprintf(stderr, "%s\n", errmsg);
 }

This sometimes suffices, but a better error routine that reports at least the line number
and the most recent token (available in yytext if your lexer is written with lex) will
make your parser much more usable.

Bison Library | 167

Download at Boykma.Com

YYABORT
The special statement

 YYABORT;

in an action makes the parser routine yyparse() return immediately with a nonzero
value, indicating failure.

It can be useful when an action routine detects an error so severe that there is no point
in continuing the parse.

Since the parser may have a one-token lookahead, the rule action containing the
YYABORT may not be reduced until the parser has read another token.

YYACCEPT
The special statement

 YYACCEPT;

in an action makes the parser routine yyparse() return immediately with a value 0,
indicating success.

It can be useful in a situation where the lexer cannot tell when the input data ends but
the parser can.

Since the parser may have a one-token lookahead, the rule action containing the
YYACCEPT may not be reduced until the parser has read another token.

YYBACKUP
The macro YYBACKUP lets you unshift the current token and replace it with something
else. The syntax is as follows:

 sym: TOKEN { YYBACKUP(newtok, newval); }

It discards the symbol sym that would have been substituted by the reduction and pre-
tends that the lexer just read the token newtok with the value newval. If there is a look-
ahead token or the rule has more than one symbol on the right side, the rule fails with
a call to yyerror().

It is extremely difficult to use YYBACKUP() correctly, so you’re best off not using it. (It’s
documented here in case you come across an existing grammar that does use it.)

168 | Chapter 6: A Reference for Bison Specifications

Download at Boykma.Com

yyclearin
The macro yyclearin in an action discards a lookahead token if one has been read. It
is most often useful in error recovery in an interactive parser to put the parser into a
known state after an error:

 stmtlist: stmt | stmtlist stmt ;

 stmt: error { reset_input(); yyclearin; } ;

After an error, this calls the user routine reset_input(), which presumably puts the
input into a known state, and then uses yyclearin to prepare to start reading tokens
anew.

See “YYRECOVERING()” on page 171 and “yyerrok” below for more information.

yydebug and YYDEBUG
Bison can optionally compile in trace code that reports everything that the parser does.
These reports are extremely verbose but are often the only way to figure out what a
recalcitrant parser is doing.

YYDEBUG
Since the trace code is large and slow, it is not automatically compiled into the object
program. To include the trace code, either use the -t flag on the bison command line
or else define the C preprocessor symbol YYDEBUG to be nonzero either on the C compiler
command line or by including something like this in the definition section:

 %{
 #define YYDEBUG 1
 %}

yydebug
The integer variable yydebug in the running parser controls whether the parser actually
produces debug output. If it is nonzero, the parser produces debugging reports, while
if it is zero, it doesn’t. You can set yydebug nonzero in any way you want, for instance,
in response to a flag on the program’s command line or by patching it at runtime with
a debugger.

yyerrok
After bison detects a syntax error, it normally refrains from reporting another error
until it has shifted three consecutive tokens without another error. This somewhat

yyerrok | 169

Download at Boykma.Com

alleviates the problem of multiple error messages resulting from a single mistake as the
parser gets resynchronized.

If you know when the parser is back in sync, you can return to the normal state in which
all errors are reported. The macro yyerrok tells the parser to return to the normal state.

For example, assume you have a command interpreter in which all commands are on
separate lines. No matter how badly the user botches a command, you know the next
line is a new command.

 cmdlist: cmd | cmdlist cmd ;

 cmd: error '\n' { yyerrok; } ;

The rule with error skips input after an error up to a newline, and yyerrok tells the
parser that error recovery is complete.

See also “YYRECOVERING()” on page 171 and “yyclearin” on page 169.

YYERROR
Sometimes your action code can detect context-sensitive syntax errors that the parser
itself cannot. If your code detects a syntax error, you can call the macro YYERROR to
produce exactly the same effect as if the parser had read a token forbidden by the
grammar. As soon as you invoke YYERROR, the parser goes into error recovery mode
looking for a state where it can shift an error token. See “Error Token and Error Re-
covery” on page 147 for details. If you want to produce an error message, you have to
call yyerror yourself.

yyerror()
Whenever a bison parser detects a syntax error, it calls yyerror() to report the error to
the user, passing it a single argument: a string describing the error. (Unless you have
calls to yyerror() in your own code, usually the only error you ever get is “syntax
error.”) The default version of yyerror in the bison library merely prints its argument
on the standard output. Here is a slightly more informative version:

 yyerror(const char *msg)
 {
 printf("%d: %s at '%s'\n", yylineno, msg, yytext);
 }

We assume yylineno is the current line number. (See “Line Numbers and yyli-
neno” on page 126.) yytext is the flex token buffer that contains the current token.

Since bison doggedly tries to recover from errors and parse its entire input, no matter
how badly garbled, you may want to have yyerror() count the number of times it’s
called and exit after 10 errors, on the theory that the parser is probably hopelessly
confused by the errors that have already been reported.

170 | Chapter 6: A Reference for Bison Specifications

Download at Boykma.Com

You can and probably should call yyerror() yourself when your action routines detect
other sorts of errors.

yyparse()
The entry point to a bison-generated parser is yyparse(). When your program calls
yyparse(), the parser attempts to parse an input stream. The parser returns a value of
zero if the parse succeeds and nonzero if not. The parser normally takes no arguments,
but see “%parse-param” on page 152 for more information.

Every time you call yyparse(), the parser starts parsing anew, forgetting whatever state
it might have been in the last time it returned. This is quite unlike the scanner
yylex() generated by lex, which picks up where it left off each time you call it.

See also “YYACCEPT” on page 168 and “YYABORT” on page 168.

YYRECOVERING()
After bison detects a syntax error, it normally enters a recovery mode in which it refrains
from reporting another error until it has shifted three consecutive tokens without an-
other error. This somewhat alleviates the problem of multiple error messages resulting
from a single mistake as the parser gets resynchronized.

The macro YYRECOVERING() returns nonzero if the parser is currently in the error recovery
mode and zero if it is not. It is sometimes convenient to test YYRECOVERING() to decide
whether to report errors discovered in an action routine.

See also “yyclearin” on page 169 and “yyerrok” on page 169.

YYRECOVERING() | 171

Download at Boykma.Com

Download at Boykma.Com

CHAPTER 7

Ambiguities and Conflicts

This chapter focuses on finding and correcting conflicts within a bison grammar. Con-
flicts occur when bison reports shift/reduce and reduce/reduce errors. Bison lists any
errors in the listing file name.output, which we will describe in this chapter, but it can
still be a challenge to figure out what’s wrong with the grammar and how to fix it.
Before reading this chapter, you should understand the general way that bison parsers
work, described in Chapter 3.

The Pointer Model and Conflicts
To describe what a conflict is in terms of the bison grammar, we introduce a model of
bison’s operation. In this model, a pointer moves through the bison grammar as each
individual token is read. When you start, there is one pointer (represented here as an
up arrow, ↑) at the beginning of the start rule:

%token A B C
%%
start: ↑ A B C;

As the bison parser reads tokens, the pointer moves. Say it reads A and B:

%token A B C
%%
start: A B ↑ C;

At times, there may be more than one pointer because of the alternatives in your bison
grammar. For example, suppose with the following grammar it reads A and B:

%token A B C D E F
%%
start: x
 | y;
x: A B ↑ C D;
y: A B ↑ E F;

(For the rest of the examples in this chapter, all capital letters are tokens, so we will
leave out the %token and the %%.) There are two ways for pointers to disappear. One

173

Download at Boykma.Com

happens when a subsequent token doesn’t match a partially matched rule. If the next
token that the parser reads is C, the second pointer will disappear, and the first pointer
advances:

 start: x
 | y;
 x: A B C ↑ D;
 y: A B E F;

The other way for pointers to disappear is for them to merge in a common subrule. In
this example, z appears in both x and y:

 start: x
 | y;
 x: A B z R;
 y: A B z S;
 z: C D

After reading A, there are two pointers:

 start: x
 | y;
 x: A ↑ B z R;
 y: A ↑ B z S;
 z: C D

After A B C, there is only one pointer, in rule z:

 start: x
 | y;
 x: A B z R;
 y: A B z S;
 z: C ↑ D;

And after A B C D, the parser has completed rule z, and there again are two:

 start: x
 | y;
 x: A B z ↑ R;
 y: A B z ↑ S;
 z: C D;

When a pointer reaches the end of a rule, the rule is reduced. Rule z was reduced when
the pointer got to the end of it after the parser read D. Then the pointer returns to the
rule from which the reduced rule was called, or as in the earlier case, the pointer splits
up into the rules from which the reduced rule was called.

There is a conflict if a rule is reduced when there is more than one pointer. Here is an
example of reductions with only one pointer:

 start: x
 | y;
 x: A ↑ ;
 y: B ;

After A, there is only one pointer—in rule x—and rule x is reduced. Similarly, after B,
there is only one pointer—in rule y—and rule y is reduced.

174 | Chapter 7: Ambiguities and Conflicts

Download at Boykma.Com

Here is an example of a conflict:

 start: x
 | y;
 x: A ↑ ;
 y: A ↑ ;

After A, there are two pointers, at the ends of rules x and y. They both want to reduce,
so it is a reduce/reduce conflict.

There is no conflict if there is only one pointer, even if it is the result of merging pointers
into a common subrule and even if the reduction will result in more than one pointer:

 start: x
 | y;
 x: z R ;
 y: z S ;
 z: A B ↑ ;

After A B, there is one pointer, at the end of rule z, and that rule is reduced, resulting
in two pointers:

 start: x
 | y;
 x: z ↑ R;
 y: z ↑ S;
 z: A B;

But at the time of the reduction, there is only one pointer, so it is not a conflict.

Kinds of Conflicts
There are two kinds of conflicts, reduce/reduce and shift/reduce. Conflicts are catego-
rized based upon what is happening with the other pointer when one pointer is reduc-
ing. If the other rule is also reducing, it is a reduce/reduce conflict. The following ex-
ample has a reduce/reduce conflict in rules x and y:

 start: x
 | y;
 x: A ↑ ;
 y: A ↑ ;

If the other pointer is not reducing, then it is shifting, and the conflict is a shift/reduce
conflict. The following example has a shift/reduce conflict in rules x and y:

 start: x
 | y R;
 x: A ↑ R;
 y: A ↑ ;

After the parser reads A, rule y needs to reduce to rule start, where R can then be
accepted, while rule x can accept R immediately.

Kinds of Conflicts | 175

Download at Boykma.Com

If there are more than two pointers at the time of a reduce, bison lists the conflicts. The
following example has a reduce/reduce conflict in rules x and y and another reduce/
reduce conflict in rules x and z:

 start: x
 | y
 | z;
 x: A ↑ ;
 y: A ↑ ;
 z: A ↑ ;

Let’s define exactly when the reduction takes place with respect to token lookahead
and pointers disappearing so we can keep our simple definition of conflicts correct.
Here is a reduce/reduce conflict:

 start: x B
 | y B;
 x: A ↑ ;
 y: A ↑ ;

But there is no conflict here:

 start: x B
 | y C;
 x: A ↑ ;
 y: A ↑ ;

The reason the second example has no conflict is that a bison parser can look ahead
one token beyond the A. If it sees a B, the pointer in rule y disappears before rule x is
reduced. Similarly, if it sees a C, the pointer in rule x disappears before rule y is reduced.

A bison parser can look ahead only one token. The following would not be a conflict
in a parser that could look ahead two tokens, but in a bison parser, it is a reduce/reduce
conflict:

 start: x B C
 | y B D;
 x: A ↑ ;
 y: A ↑ ;

A GLR parser can resolve this kind of conflict in situations where it’s impractical to
rewrite the grammar to avoid the conflict. See Chapter 9.

Parser States
Bison tells you about your grammar’s conflicts in name.output, which is a description
of the state machine it is generating. We will discuss what the states are, describe the
contents of name.output, and then discuss how to find the problem in your bison gram-
mar given a conflict described in name.output. You can generate name.output by running
bison with the -v (verbose) option.

176 | Chapter 7: Ambiguities and Conflicts

Download at Boykma.Com

Each state corresponds to a unique combination of possible pointers in your bison
grammar. Every nonempty bison grammar has at least three unique possible states: one
at the beginning when no input has been accepted, one when a complete valid input
has been accepted, and a third after the $end token has been accepted. The following
simple example has two more states:

 start: A <one here> B <another here> C;

For future examples, we will number the states as a clear means of identification. Bison
assigns a number to each state, but the particular numbers are not significant. Different
versions of bison may number the states differently.

 start: A <state 1> B <state 2> C;

When a given stream of input tokens can correspond to more than one possible pointer
position, then all the pointers for a given token stream correspond to one state:

 start: a
 | b;
 a: X <state 1> Y <state 2> Z;
 b: X <state 1> Y <state 2> Q;

Different input streams can correspond to the same state when they correspond to the
same pointer:

 start: threeAs;
 threeAs: /* empty */
 | threeAs A <state 1> A <state2> A <state3>;

The previous grammar accepts some multiple of three As. State 1 corresponds to 1, 4,
7, ... As; state 2 corresponds to 2, 5, 8, ... As; and state 3 corresponds to 3, 6, 9, ... As.
We rewrite this as a right-recursive grammar to illustrate the next point.

 start: threeAs;
 threeAs: /* empty */
 | A A A threeAs;

A position in a rule does not necessarily correspond to only one state. A given pointer
in one rule can correspond to different pointers in another rule, making several states:

 start: threeAs X
 | twoAs Y;
 threeAs: /* empty */
 | A A A threeAs;
 twoAs: /* empty */
 | A A twoAs;

The grammar above accepts multiples of 2 or 3 As, followed by an X for multiples of 3,
or a Y for multiples of 2. Without the X or Y, the grammar would have a conflict, not
knowing whether a multiple of 6 As satisfied threeAs or twoAs. It would also have a
conflict if we’d used left recursion, since it would have to reduce twoAs or threeAs before
it saw a final X or Y. If we number the states as follows:

 state 1: 1, 7, ... A's accepted
 state 2: 2, 8, ... A's accepted

Parser States | 177

Download at Boykma.Com

 ...
 state 6: 6, 12, ... A's accepted

then the corresponding pointer positions are as follows:

 start: threeAs X
 | twoAs Y;
 threeAs: /* empty */
 | A <1,4> A <2,5> A <3,6> threeAs;
 twoAs: /* empty */
 | A <1,3,5> A <2,4,6> twoAs;

That is, after the first A in threeAs, the parser could have accepted 6i+1 or 6i+4 As,
where i is 0, 1, etc. Similarly, after the first A in twoAs, the parser could have accepted
6i+1, 6i+3, or 6i+5 As.

Contents of name.output
Now that we have defined states, we can look at the conflicts described in
name.output. The format of the file has varied among versions of bison, but it always
includes a listing of all the rules in the grammar and all the parser states. It usually has
a summary of conflicts and other errors at the beginning, including rules that are never
used, typically because of conflicts. For each state, it lists the rules and positions that
correspond to the state, the shifts and reductions the parser will do when it reads various
tokens in that state, and what state it will switch to after a reduction produces a non-
terminal in that state. We’ll show some ambiguous grammars and the name.output
reports that identify the ambiguities. The files that bison produces show the cursor as
a dot, but we’ll show it as an up arrow (↑) to make it easier to read and to be consistent
with the examples so far.

Reduce/Reduce Conflicts
Consider the following ambiguous grammar:

 start: a Y
 | b Y ;
 a: X ;
 b: X ;

When we run it through bison, a typical state description is as follows:

state 3

 1 start: a ↑ Y

 Y shift, and go to state 6

In this state, the parser has already reduced an a. If it sees a Y, it shifts the Y and moves
to state 6. Anything else would be an error. The ambiguity produces a reduce/reduce
conflict in state 1:

178 | Chapter 7: Ambiguities and Conflicts

Download at Boykma.Com

state 1

 3 a: X ↑
 4 b: X ↑

 Y reduce using rule 3 (a)
 Y [reduce using rule 4 (b)]
 $default reduce using rule 3 (a)

The fourth and fifth lines show a conflict between rule 3 and rule 4 when token Y is
read. In this state, it’s reading an X, which may be an a or a b. They show the two rules
that might be reduced. The dot shows where in the rule you are before receiving the
next token. This corresponds to the pointer in the bison grammar. For reduce conflicts,
the pointer is always at the end of the rule. In a conflict, the rule not used is shown in
brackets; in this case bison chose to reduce rule 3, since it resolves reduce/reduce con-
flicts by reducing the rule that appears earlier in the grammar.

The rules may have tokens or nonterminals in them. The following ambiguous
grammar:

 start: a Z
 | b Z;
 a: X y;
 b: X y;
 y: Y;

produces a parser with this state:

state 6

 3 a: X y .
 4 b: X y .

 Z reduce using rule 3 (a)
 Z [reduce using rule 4 (b)]
 $default reduce using rule 3 (a)

In this state, the parser has already reduced a Y to a y, but the y could complete either
an a or a b. Transitions on nonterminals can lead to reduce/reduce conflicts just as
tokens can. It’s easy to tell the difference if you use uppercase token names, as we have.

The rules that conflict do not have to be identical. This grammar:

 start: A B x Z
 | y Z;
 x: C;
 y: A B C;

when processed by bison, produces a grammar containing this state:

state 7

 3 x: C .
 4 y: A B C .

 Z reduce using rule 3 (x)

Reduce/Reduce Conflicts | 179

Download at Boykma.Com

 Z [reduce using rule 4 (y)]
 $default reduce using rule 3 (x)

In state 7, the parser has already accepted A B C. Rule x has only C in it, because in the
start rule from which x is called, A B is accepted before reaching x. The C could complete
either an x or a y. Bison again resolves the conflict by reducing the earlier rule in the
grammar, in this case rule 3.

Shift/Reduce Conflicts
Identifying a shift/reduce conflict is a little harder. To identify the conflict, we will do
the following:

• Find the shift/reduce error in name.output.

• Identify the reduce rule.

• Identify the relevant shift rule(s).

• See what state the reduce rule reduces to.

• Deduce the token stream that will produce the conflict.

This grammar contains a shift/reduce conflict:

 start: x
 | y R;
 x: A R;
 y: A;

Bison produces this complaint:

state 1

 3 x: A . R
 4 y: A .

 R shift, and go to state 5

 R [reduce using rule 4 (y)]

State 1 has a shift/reduce conflict between shifting token R, which moves to state 5, and
reducing rule 4 when it reads an R. Rule 4 is rule y, as shown in this line:

 4 y: A .

You can find the reduce rule in a shift/reduce conflict the same way you find both rules
in a reduce/reduce conflict. The reduction number is listed in the reduce using line. In
the previous case, the rule with the shift conflict is the only rule left in the state:

 3 x: A . R

The parser is in rule x, having read A and about to accept R. The shift conflict rule was
easy to find in this case, because it is the only rule left, and it shows that the next token

180 | Chapter 7: Ambiguities and Conflicts

Download at Boykma.Com

is R. Bison resolves shift/reduce conflicts in favor of the shift, so in this case if it receives
an R, it shifts to state 5.

The next thing showing may be a rule instead of a token:

 start: x1
 | x2
 | y R;
 x1: A R;
 x2: A z;
 y: A;
 z: R;

Bison reports several conflicts, including this one:

state 1

 4 x1: A ↑ R
 5 x2: A ↑ z
 6 y: A ↑

 R shift, and go to state 6

 R [reduce using rule 6 (y)]

 z go to state 7

In the previous example, the reduction rule is as follows:

 6 y: A ↑

so that leaves two candidates for the shift conflict:

 4 x1: A ↑ R
 5 x2: A ↑ z

Rule x1 uses the next token, R, so you know it is part of the shift conflict, but rule x2
shows the next symbol (not token). You have to look at the rule for z to find out whether
it starts with an R. In this case it does, so there is a conflict for an A followed by an R: it
could be an x1, an x2 that includes a z, or a y followed by an R.

There could be more rules in a conflicting state, and they may not all accept an R.
Consider this extended version of the grammar:

 start: x1
 | x2
 | x3
 | y R;
 x1: A R;
 x2: A z1;
 x3: A z2
 y: A;
 z1: R;
 z2: S;

Bison produces a listing with this state:

Shift/Reduce Conflicts | 181

Download at Boykma.Com

state 1

 5 x1: A ↑ R
 6 x2: A ↑ z1
 7 x3: A ↑ z2
 8 y: A ↑

 R shift, and go to state 7
 S shift, and go to state 8

 R [reduce using rule 8 (y)]

 z1 go to state 9
 z2 go to state 10

The conflict is between shifting to state 7 and reducing rule 8. The reduce problem,
rule 8, is the rule for y. The rule for x1 has a shift problem, because the next token after
the dot is R. It is not immediately obvious whether x2 or x3 caused conflicts, because
they show rules z1 and z2 following the dots. When you look at rules z1 and z2, you
find that z1 contains an R next and z2 contains an S next, so x2 that uses z1 is part of
the shift conflict and x3 is not.

In each of our last two shift/reduce conflict examples, can you also see a reduce/reduce
conflict? Run bison, and look in name.output to check your answer.

Review of Conflicts in name.output
We’ll review the relationship among our pointer model, conflicts, and name.output.
First, here is a reduce/reduce conflict:

 start: A B x Z
 | y Z;
 x: C;
 y: A B C;

The bison listing contains the following:

state 7

 3 x: C ↑
 4 y: A B C ↑

 Z reduce using rule 3 (x)
 Z [reduce using rule 4 (y)]
 $default reduce using rule 3 (x)

There is a conflict because if the next token is Z, bison wants to reduce rules 3 and 4,
which are the rules for both x and y. Or using our pointer model, there are two pointers,
and both are reducing:

 start: A B x z
 | y Z;

182 | Chapter 7: Ambiguities and Conflicts

Download at Boykma.Com

 x: c ↑ ;
 y: A B C ↑ ;

Here is a shift/reduce conflict example:

 start: x
 | y R;
 x: A R;
 y: A;

Bison reports this conflict:

state 1

 3 x: A ↑ R
 4 y: A ↑

 R shift, and go to state 5

 R [reduce using rule 4 (y)]

If the next token is R, bison wants both to reduce the rule for y and to shift an R in the
rule for x, causing a conflict. Or there are two pointers, and one is reducing:

 start: x
 | y R;
 x: A ↑ R;
 y: A ↑ ;

Common Examples of Conflicts
The three most common situations that produce shift/reduce conflicts are expression
grammars, if/then/else, and nested lists of items. After we see how to identify these
three situations, we’ll look at ways to get rid of the conflicts.

Expression Grammars
Our first example is adapted from the original 1975 Unix yacc manual.

 expr: TERMINAL
 | expr '-' expr ;

The state with a conflict is as follows:

state 5

 2 expr: expr ↑ '-' expr
 2 | expr '-' expr ↑

 '-' shift, and go to state 4

 '-' [reduce using rule 2 (expr)]
 $default reduce using rule 2 (expr)

Common Examples of Conflicts | 183

Download at Boykma.Com

Bison tells us that there is a shift/reduce conflict when it reads the minus token. We
can add our pointers to get the following:

 expr: expr ↑ - expr ;
 expr: expr - expr ↑ ;

These are in the same rule, not even different alternatives with the same LHS. You can
have a state where your pointers can be in two different places in the same rule, because
the grammar is recursive. (In fact, all of the examples in this section are recursive. Most
tricky bison problems turn out to involve recursive rules.)

After accepting two exprs and -, the pointer is at the end of rule expr, as shown in the
second line of the earlier pointer example. But expr - expr is also an expr, so the pointer
can also be just after the first expr, as shown in the first line of the earlier example. If
the next token is not -, then the pointer in the first line disappears because it wants -
next, so you are back to one pointer. But if the next token is -, then the second line
wants to reduce, and the first line wants to shift, causing a conflict.

To solve this conflict, look at name.output, shown earlier, to find the source of the
conflict. Get rid of irrelevant rules in the state (there are not any in this tiny example),
and you get the two pointers we just discussed. It becomes clear that the problem is as
follows:

 expr - expr - expr

The middle expr might be the second expr of an expr - expr, in which case the input
is interpreted as follows:

 (expr - expr) - expr

which is left associative, or might be the first expr, in which case the input is interpreted
as follows:

 expr - (expr - expr)

which is right associative. After reading expr - expr, the parser could reduce if using
left associativity or shift using right associativity. If not instructed to prefer one or the
other, this ambiguity causes a shift/reduce conflict, which bison resolves by choosing
the shift. Figure 7-1 shows the two possible parses.

Later in this chapter, we cover the ways to handle this kind of conflict.

184 | Chapter 7: Ambiguities and Conflicts

Download at Boykma.Com

Figure 7-1. Two parses of expr - expr - expr

IF/THEN/ELSE
Our next example is also from the Unix yacc manual. Again, we have added a terminal
symbol for completeness:

 stmt: IF '(' cond ')' stmt
 | IF '(' cond ')' stmt ELSE stmt
 | TERMINAL;
 cond: TERMINAL;

Bison complains:

State 9 conflicts: 1 shift/reduce
 ...

state 9

 1 stmt: IF '(' cond ')' stmt ↑
 2 | IF '(' cond ')' stmt ↑ ELSE stmt

 ELSE shift, and go to state 10

 ELSE [reduce using rule 1 (stmt)]
 $default reduce using rule 1 (stmt)

In terms of pointers this is as follows:

 stmt: IF (cond) stmt ↑ ;
 stmt: IF (cond) stmt ↑ ELSE stmt ;

The first line is the reduce part of the conflict, and the second is the shift part. This time
they are different rules with the same LHS. To figure out what is going wrong, we check

Common Examples of Conflicts | 185

Download at Boykma.Com

to see where the first line reduces to. It has to be a call to stmt, followed by an ELSE.
There is only one place where that happens:

 stmt: IF (cond) stmt <return to here> ELSE stmt ;

After the reduction, the pointer returns to the same spot where it is for the shift part of
the conflict. This problem is very similar to the one with expr - expr - expr in the
previous example. And using similar logic, in order to reduce IF (cond) stmt into
stmt and end up here:

 stmt: IF (cond) stmt <here> ELSE stmt ;

you have to have this token stream:

 IF (cond) IF (cond) stmt ELSE

Again, do you want to group it like this:

 IF (cond) { IF (cond) stmt } ELSE stmt

or like this?

 IF (cond) { IF (cond) stmt ELSE stmt }

The next section explains what to do about this kind of conflict.

Nested List Grammar
Our final example is a simple version of a problem that novice bison programmers often
encounter:

 start: outerList Z ;
 outerList: /* empty */
 | outerList outerListItem ;

 outerListItem: innerList ;

 innerList: /* empty */
 | innerList innerListItem ;

 innerListItem: I ;

Bison reports this conflict:

state 2

 1 start: outerList ↑ Z
 3 outerList: outerList ↑ outerListItem

 Z shift, and go to state 4

 Z [reduce using rule 5 (innerList)]
 $default reduce using rule 5 (innerList)

 outerListItem go to state 5
 innerList go to state 6

186 | Chapter 7: Ambiguities and Conflicts

Download at Boykma.Com

Once again we can analyze the problem step by step. The reduce rule is the empty
alternative of innerList. That leaves two candidates for the shift problem. Rule start
is one, because it explicitly takes Z as the next token. The nonempty alternative of
outerList might be a candidate, if it takes Z next. We see that outerList includes an
outerListItem, which is an innerList. In this situation, innerList can’t include an
innerListItem, because that includes an I, and this conflict occurs only when the next
token is a Z. But an innerList can be empty, so the outerListItem involves no tokens,
so we might actually be at the end of the outerList as well, since as the first line in the
conflict report told us, an outerList can be followed by a Z.

This all boils down to this state: We have just finished an innerList, possibly empty,
or an outerList, possibly empty. How can it not know which list it has just finished?
Look at the two list expressions. They can both be empty, and the inner one sits in the
outer one without any token to say it is starting or finishing the inner loop. Assume the
input stream consists solely of a Z. Is it an empty outerList, or is it an outerList with
one item, an empty innerList? That’s ambiguous.

The problem with this grammar is that it is redundant. It has to have a loop within a
loop, with nothing to separate them. Since this grammar actually accepts a possibly
empty list of Is followed by a Z, it can easily be rewritten using only one recursive rule:

 start: outerList Z ;
 outerList: /* empty */
 | outerList outerListItem ;
 outerListItem: I ;

But rewriting it this way is rarely the right thing to do. More likely there really are
supposed to be two nested lists, but you forgot to include punctuation in
outerListItem to delimit the inner from the outer loop. We offer some suggestions later
in this chapter.

How Do You Fix the Conflict?
The rest of this chapter describes what to do with a conflict once you’ve figured out
what it is. We’ll discuss how to fix classes of conflicts that have commonly caused
trouble for bison users.

When trying to resolve conflicts, start with the rules that are involved in the most
conflicts, and work your way down the list. More often than not, when you resolve the
major conflicts, many of the minor ones will go away, too.

If you’re writing a parser for a language you’re inventing, conflicts in the parser often
indicate ambiguities or inconsistencies in the language’s definition. First figure out
what’s causing the conflict, and then decide whether the language is OK and you just
need to adjust the grammar to describe the language correctly or whether the language
is ambiguous, in which case you may want to change both the language and the gram-
mar to be unambiguous. Languages that bison has trouble parsing are often hard for

How Do You Fix the Conflict? | 187

Download at Boykma.Com

people to parse in their heads; you’ll often end up with a better language design if you
change your language to remove the conflicts.

IF/THEN/ELSE (Shift/Reduce)
We saw this conflict earlier in this chapter. Here we describe what to do with the shift/
reduce conflict once you’ve tracked it down. It turns out that the default way that bison
resolves this particular conflict is usually what you want it to do anyway. How do you
know it’s doing what you want it to do? Your choices are to (1) be good enough at
reading bison descriptions, (2) be masochistic enough to decode the name.output listing,
or (3) test the generated code to death. Once you’ve verified that you’re getting what
you want, you ought to make bison quit complaining. Conflict warnings may confuse
or annoy anyone trying to maintain your code, and if there are other conflicts in the
grammar that indicate genuine errors, it’s hard to tell the real problems from the false
alarms.

The standard way to resolve this conflict is to have separate rules for matched and
unmatched IF/THEN statements and to rewrite the grammar this way:

 stmt: matched
 | unmatched
 ;
 matched: other_stmt
 | IF expr THEN matched ELSE matched
 ;
 unmatched: IF expr THEN stmt
 | IF expr THEN matched ELSE unmatched
 ;
 other_stmt: /* rules for other kinds of statement */ ...

The nonterminal other_stmt represents all of the other possible statements in the
language.

It’s also possible to use explicit precedence to tell bison which way to resolve the conflict
and to keep it from issuing a warning. If your language uses a THEN keyword (as Pascal
does), you can do this:

 %nonassoc THEN
 %nonassoc ELSE

 %%

 stmt: IF expr THEN stmt
 | IF expr stmt ELSE stmt
 ;

In languages that don’t have a THEN keyword, you can use a fake token and %prec to
accomplish the same result:

 %nonassoc LOWER_THAN_ELSE
 %nonassoc ELSE

188 | Chapter 7: Ambiguities and Conflicts

Download at Boykma.Com

 %%

 stmt: IF expr stmt %prec LOWER_THAN_ELSE ;
 | IF expr stmt ELSE stmt;

The shift/reduce conflict here is a conflict between shifting an ELSE token and reducing
a stmt rule. You need to assign a precedence to the token (%nonassoc ELSE) and to the
rule, with %nonassoc THEN or %nonassoc LOWER_THAN_ELSE and %prec LOWER_THAN_ELSE.
The precedence of the token to shift must be higher than the precedence of the
rule to reduce, so %nonassoc ELSE must come after %nonassoc THEN or %nonassoc
LOWER_THAN_ELSE. It makes no difference for this application if you use %nonassoc,
%left, or %right, since there’s no situation with a conflict that involves shifting a token
and reducing a rule containing the same token.

The goal here is to hide a conflict you know about and understand, not to hide any
others. When you’re trying to mute bison’s warnings about other shift/reduce conflicts,
the further you get from the previous example, the more careful you should be. Use
%nonassoc, so if you accidentally do add other rules that create such a conflict, bison
will still report it. Other shift/reduce conflicts may be amenable to a simple change in
the bison description. And, as we mentioned, any conflict can be fixed by changing the
language. For example, the IF/THEN/ELSE conflict can be eliminated by insisting on
BEGIN-END or braces around the stmt.

What would happen if you swapped the precedence of the token to shift and the rule
to reduce? The normal IF-ELSE handling makes the following two equivalent:

 if expr if expr stmt else stmt
 if expr { if expr stmt else stmt }

It seems only fair that swapping the precedence would make the following two equiv-
alent, right?

 if expr if expr stmt else stmt
 if expr { if expr stmt } else stmt

Nope. That’s not what it does. Having higher precedence on the shift (normal
IF-ELSE) makes it always shift the ELSE. Swapping the precedence makes it never shift
the ELSE, so your IF-ELSE can no longer have an else.

Normal IF-ELSE processing associates the ELSE with the most recent IF. Suppose you
want it some other way. One possibility is that you allow only one ELSE with a sequence
of IFs, and the ELSE is associated with the first IF. This would require a two-level state-
ment definition, as follows:

 %nonassoc LOWER_THAN_ELSE
 %nonassoc ELSE

 %%

 stmt: IF expr stmt2 %prec LOWER_THAN_ELSE
 | IF expr stmt2 ELSE stmt;

How Do You Fix the Conflict? | 189

Download at Boykma.Com

 stmt2: IF expr stmt2;

But don’t do that, since a language is extremely counterintuitive.

Loop Within a Loop (Shift/Reduce)
This conflict occurs when the grammar has two nested list-creating loops, with no
punctuation to say where the boundaries between entries in the outer list are.

 start: outerList Z ;
 outerList: /* empty */
 | outerList outerListItem ;

 outerListItem: innerList ;
 innerList: /* empty */
 | innerList innerListItem ;

 innerListItem: I ;

Assuming that’s really what you want, the resolution of this conflict depends on
whether you want repetitions to be treated as one outer loop and many inner loops or
as many outer loops of one inner loop each. The difference is whether the code asso-
ciated with outerListItem gets executed once for each repetition or once for each set
of repetitions. If it makes no difference, choose one or the other arbitrarily. If you want
many outer loops, remove the inner loop:

 start: outerList Z ;

 outerList: /* empty */
 | outerList innerListItem ;

 innerListItem: I ;

If you want many inner loops, remove the outer loop:

 start: innerList Z ;

 innerList: /* empty */
 | innerList innerListItem ;

 innerListItem: I ;

In practice, it’s pretty rare to have a pair of nested lists with no punctuation. It’s con-
fusing to bison, and it’s confusing to us humans, too. If the outer list is something like
a list of statements in a programming language, if you change the language and put a
semicolon after each outerListItem, the conflicts go away:

 start: outerList Z ;
 outerList: /* empty */
 | outerList outerListItem ';' ;

 outerListItem: innerList ;
 innerList: /* empty */

190 | Chapter 7: Ambiguities and Conflicts

Download at Boykma.Com

 | innerList innerListItem ;

 innerListItem: I ;

Expression Precedence (Shift/Reduce)
 expr: expr '+' expr
 | expr '-' expr
 | expr '*' expr
 | ...
 ;

If you describe an expression grammar but forget to define the precedence with %left
and %right, you get a truckload of shift/reduce conflicts. Assigning precedence to all
of the operators should resolve the conflicts. Keep in mind that if you use any of the
operators in other ways, for example, using a - to indicate a range of values, the prec-
edence can also mask conflicts in the other contexts.

Limited Lookahead (Shift/Reduce or Reduce/Reduce)
Most shift/reduce conflicts are because of bison’s limited lookahead. That is, a parser
that could look further ahead would not have a conflict. For example:

 statement: command optional_keyword '(' identifier_list ')'
 ;

 optional_keyword: /* blank */
 | '(' keyword ')'
 ;

The example describes a command line that starts with a required command, ends with
a required identifier list in parentheses, and has in the middle an optional keyword in
parentheses. Bison gets a shift/reduce conflict with this when it gets to the first paren-
thesis in the input stream, because it can’t tell whether it is part of the optional keyword
or the identifier list. In the first case, the parser would shift the parenthesis within the
optional_keyword rule, and in the second, it would reduce an empty optional_key
word and move on to the identifier list. If a bison parser could look further ahead, it
could tell the difference between the two. But a parser using the regular bison parsing
algorithm can’t.

The default is for bison to choose the shift, which means it always assumes the optional
keyword is there. (You can’t really call it optional in that case.) If you apply precedence,
you could get the conflict to resolve in favor of the reduction, which would mean you
could never have the optional keyword.

We can flatten the description, expanding the optional_keyword rule where it occurs in
statement:

How Do You Fix the Conflict? | 191

Download at Boykma.Com

 statement: command '(' keyword ')' '(' identifier_list ')'
 | command '(' identifier_list ')'
 ;

By flattening the list, we allow the parser to scan ahead with multiple possible pointers
until it sees a keyword or identifier, at which point it can tell which rule to use.

Flattening is a practical solution in this example, but when more rules are involved, it
rapidly becomes impractical because of the exponential expansion of the bison de-
scription. You may run into a shift/reduce conflict from limited lookahead for which
your only practical solution is to change the language or use a GLR parser.

It’s also possible to get a reduce/reduce conflict because of limited lookahead. One way
is to have an overlap of alternatives:

 statement: command_type_1 ':' '[' ...
 | command_type_2 ':' '(' ...

 command_type_1: CMD_1 | CMD_2 | CMD_COMMON ;

 command_type_2: CMD_A | CMD_B | CMD_COMMON ;

If the input includes CMD_COMMON, the parser can’t tell whether it’s parsing a
command_type_1 or command_type_2 until it sees the bracket or parenthesis, but that’s two
tokens ahead. The solution for this is flattening, as we did earlier, or making the alter-
natives disjoint, as described in the following section.

You can also get a reduce/reduce conflict from limited lookahead because actions in
the middle of a rule are really anonymous rules that must be reduced:

 statement: command_list { <action for '['form> }':' '[' ...
 | command_list { <action for '('form> }':' '(' ...

This is already flattened, so there’s nothing you can do to get it to work without using
a GLR parser. It simply needs a two-token lookahead, and LALR(1) parsers don’t have
that. Unless you’re doing some sort of exotic communication between the parser and
lexer, you can just move the action over:

 statement: command_list ':' '[' { <action for '[' form> } ...
 | command_list ':' '(' { <action for '(' form> } ...

Overlap of Alternatives (Reduce/Reduce)
In this case, you have two alternative rules with the same LHS, and the inputs accepted
by them overlap partially. The easiest way to make this work in a regular bison parser
is to make the two input sets disjoint. For example:

 person: girls
 | boys
 ;

 girls: ALICE
 | BETTY

192 | Chapter 7: Ambiguities and Conflicts

Download at Boykma.Com

 | CHRIS
 | DARRYL
 ;

 boys: ALLEN
 | BOB
 | CHRIS
 | DARRYL
 ;

You will get a reduce/reduce conflict on CHRIS and DARRYL because bison can’t tell
whether they’re intended to be girls or boys. There are several ways to resolve the
conflict. One is as follows:

 person: girls | boys | either;

 girls: ALICE
 | BETTY
 ;

 boys: ALLEN
 | BOB
 ;

 either: CHRIS
 | DARRYL
 ;

But what if these lists were really long or were complex rules rather than just lists of
keywords? What would you do if you wanted to minimize duplication and girls and
boys were referenced many other places in the bison description? Here’s one possibility:

 person: just_girls
 | just_boys
 | either
 ;

 girls: just_girls
 | either
 ;

 boys: just_boys
 | either
 ;

 just_girls: ALICE
 | BETTY
 ;

 just_boys: ALLEN
 | BOB
 ;

 either: CHRIS

How Do You Fix the Conflict? | 193

Download at Boykma.Com

 | DARRYL
 ;

All references to boys | girls have to be fixed. GLR doesn’t help much here since the
original grammar is ambiguous, so you’d still have to deal with the ambiguity.

But what if it’s impractical to make the alternatives disjoint? If you just can’t figure out
a clean way to break up the overlap, then you’ll have to leave the reduce/reduce conflict,
use a GLR parser, and deal explicitly with the ambiguity using the techniques discussed
in Chapter 9.

If you don’t use a GLR parser, bison will use its default disambiguating rule for reduce/
reduce, which is to choose the first definition in the bison description. So in the first
girls | boys example earlier, CHRIS and DARRYL would always be girls. Swap the po-
sitions of the boys and girls lists, and CHRIS and DARRYL are always boys. You’ll still get
the reduce/reduce warning, and bison will make the alternatives disjoint for you, ex-
actly what you were trying to avoid.

Summary
Ambiguities and conflicts within the bison grammar are just one type of coding error,
one that is problematic to find and correct. This chapter has presented some techniques
for correcting these errors. In the chapter that follows, we will look at other sources of
errors.

Our goal in this chapter has been for you understand the problem at a high enough
level that you can fix it. To review how to get to that point:

• Find the shift/reduce error in name.output.

• Identify the reduce rule.

• Identify the relevant shift rule(s).

• See where the reduce rule will reduce back to.

• With this much information, you should be able to identify the token stream lead-
ing up to the conflict.

Seeing where the reduce rule reduces to is typically straightforward, as we have shown.
Sometimes a grammar is so complicated that it is not practical to use our “hunt-around”
method, and you will need to learn the detailed operation of the state machine to find
the states to which you reduce.

Exercises
1. All reduce/reduce conflicts and many shift/reduce conflicts are caused by ambig-

uous grammars. Beyond the fact that bison doesn’t like them, why are ambiguous
grammars usually a bad idea?

194 | Chapter 7: Ambiguities and Conflicts

Download at Boykma.Com

2. Find a grammar for a substantial programming language like C, C++, or Fortran,
and run it through bison. Does the grammar have conflicts? (Nearly all of them
do.) Go through the name.output listing, and determine what causes the conflicts.
How hard would they be to fix?

3. After doing the previous exercise, opine about why languages are usually defined
and implemented with ambiguous grammars.

Exercises | 195

Download at Boykma.Com

Download at Boykma.Com

CHAPTER 8

Error Reporting and Recovery

The previous chapters discussed techniques for finding errors within bison grammars.
In this chapter, we turn our attention to the other side of error detection—how the
parser and lexical analyzer detect errors. This chapter presents some techniques to
incorporate error detection and reporting into a parser. We’ll make a modified version
of the SQL parser from Chapter 4 that demonstrates them.

Bison provides the error token and the yyerror() routine, which are typically sufficient
for early versions of a tool. However, as any program begins to mature, especially a
programming tool, it becomes important to provide better error recovery, which allows
for detection of errors in later portions of the file, and to provide better error reporting.

Error Reporting
Error reporting should give as much detail about the error as possible. The default bison
error declares only that it found a syntax error and stops parsing. In our examples, we
used yylineno to report the line number. This provides the location of the error but
does not report any other errors within the file or where in the specified line the error
occurs. The bison locations feature, described later in this chapter, is an easy way to
pinpoint the location of an error, down to the exact line and character numbers. In our
example, we print out the locations, but precise location information would also allow
a visual interface to highlight the relevant text.

It is often useful to categorize the possible errors, perhaps building an array of error
types and defining symbolic constants to identify the errors. For example, in many
languages a common error is to fail to terminate a string. Another error might be using
the wrong type of string (a quoted string instead of an identifier, or vice versa). A parser
might detect the following:

• General syntactic errors (e.g., a line that makes no sense)

• A nonterminated string

• The wrong type of string (quoted instead of unquoted, or vice versa)

197

Download at Boykma.Com

• A premature end-of-file within a comment or other item that should have a
terminator

• Names with multiple definitions, or names used but not defined

The duty for error detection does not lie with bison alone, however. Many fundamental
errors are better detected by the lexer. For instance, the normal quoted string matching
pattern is as follows:

 \"[^\"\n]*\"

We would like to detect an unterminated quoted string. One potential solution is to
add a new rule to catch unterminated strings as we did in the SQL parser in Chap-
ter 4. If a quoted string runs all the way to the end of the line without a closing quote,
we print an error:

 \"[^\"\n]*\" {
 yylval.string = yytext;
 return QSTRING;
 }
 \"[^\"\n]*$ {
 warning("Unterminated string");
 yylval.string = yytext;
 return QSTRING;
 }

This technique of accepting not quite valid input and then reporting it with an error or
warning is a powerful one that can be used to improve the error reporting of the com-
piler. If we had not added this rule, the compiler would have reported the generic
“syntax error” message; by reporting the specific error, we can tell the user precisely
what to fix. Later in this chapter, we will describe ways to resynchronize and attempt
to continue operation after such errors.

The bison equivalent of accepting erroneous input is demonstrated by testing for the
improper use of a quoted string for an identifier. For example, in MySQL it can be easy
to confuse a quoted string in single forward quotes, 'string', with a quoted name in
back quotes, `name`. In contexts where only one is valid, you can add a rule for the
other and diagnose it in detail. Here’s a version of the column_list rule that is used as
the target of SELECT ... INTO:

column_list: NAME { emit("COLUMN %s", $1); free($1); $$ = 1; }
 | STRING { yyerror("Column name %s cannot be a string", $1);
 emit("COLUMN %s", $1); free($1); $$ = 1; }
 | column_list ',' NAME { emit("COLUMN %s", $3); free($3); $$ = $1 + 1; }
 | column_list ',' STRING { yyerror("Column name %s cannot be a string", $3);
 emit("COLUMN %s", $3); free($3); $$ = $1 + 1; }
 ;

If the user types a string rather than a name, it calls yyerror() to report it, and then it
goes ahead pretending the string was a name.

Some simple flex hackery can let you produce better error reports than the rather dull
defaults. A very simple technique that we used in the SQL parser reports the line number

198 | Chapter 8: Error Reporting and Recovery

Download at Boykma.Com

and current token. The yylineno option automatically increments the line number on
each \n character, and the current token is always available in yytext, so a simple but
useful error routine would be the following:

 void yyerror(char *s)
 {
 printf("%d: %s at %s\n", yylineno, s, yytext);
 }

A slightly more complex trick saves the input a line at a time:

 %code {
 char linebuf[500];
 %}
 %%
 \n.* { strncpy(linebuf, yytext+1, sizeof(linebuf)); /* save the next line */
 yyless(1); /* give back all but the \n to rescan */
 }
 %%

 void yyerror(char *s)
 {
 printf("%d: %s at %s in this line:\n%s\n",
 lineno, s, yytext, linebuf);
 }

The pattern \n.* matches a newline character and the entire next line. The action code
saves the line, and then it gives it back to the scanner with yyless().

To pinpoint the exact position of an erroneous token in the input line, we need to use
locations.

Locations
The bison locations feature associates a section of the input file identified by line and
column numbers with every symbol in the parser. Locations are stored in YYLTYPE
structures, which by default are declared as follows:

typedef struct YYLTYPE
{
 int first_line;
 int first_column;
 int last_line;
 int last_column;
} YYLTYPE;

Later we’ll see how to override this if, for example, you want to add a filename or other
extra information to each location.

The lexer sets the location for each token it returns, and every time it reduces a rule,
the parser automatically sets the location of the newly created LHS symbol to run from
the beginning of the first RHS symbol to the end of the last RHS symbol. Within action
code in the parser, you can refer to the location of the LHS symbol as @$ and the RHS

Locations | 199

Download at Boykma.Com

symbols as @1, @2, and so forth. The lexer has to put the location information for each
token into yylloc, which the parser defines each time it returns a token. Fortunately,
we can do this without having to add code to each lexer action.

Adding Locations to the Parser
Bison automatically adds the location code to the parser if it sees a reference to an @N
location in the action code, or you can put the %locations declaration in the declaration
part of the program.

We also need to change the error routines to use the location information. In our SQL
example, we have both yyerror(), which uses the current location in yylloc, and a new
routine lyyerror(), which takes an extra argument, which is the location of the error.
In both cases, it prints out the location information (if any) before the error report.

 /* in code section at the end of the parser */
void
yyerror(char *s, ...)
{
 va_list ap;
 va_start(ap, s);

 if(yylloc.first_line)
 fprintf(stderr, "%d.%d-%d.%d: error: ", yylloc.first_line, yylloc.first_column,
 yylloc.last_line, yylloc.last_column);
 vfprintf(stderr, s, ap);
 fprintf(stderr, "\n");

}

void
lyyerror(YYLTYPE t, char *s, ...)
{
 va_list ap;
 va_start(ap, s);

 if(t.first_line)
 fprintf(stderr, "%d.%d-%d.%d: error: ", t.first_line, t.first_column,
 t.last_line, t.last_column);
 vfprintf(stderr, s, ap);
 fprintf(stderr, "\n");
}

Note the defensive check for a nonzero first_line value; a rule with an empty RHS
uses the location information of the previous item in the parse stack.

Within the parser proper, we change all the yyerror calls to lyyerror to report the
appropriate token. For example:

column_list: NAME { emit("COLUMN %s", $1); free($1); $$ = 1; }
 | STRING { lyyerror(@1, "string %s found where name required", $1);
 emit("COLUMN %s", $1); free($1); $$ = 1; }
 ...

200 | Chapter 8: Error Reporting and Recovery

Download at Boykma.Com

select_opts: { $$ = 0; }
| select_opts ALL { if($$ & 01) lyyerror(@2,"duplicate ALL option"); $$ = $1 | 01; }
 ...
insert_asgn_list:
 NAME COMPARISON expr { if ($2 != 4) {
 lyyerror(@2,"bad insert assignment to %s", $1); YYERROR;
 }
 emit("ASSIGN %s", $1); free($1); $$ = 1;
 }

That’s all we need to do to the parser, since the default location update code does the
right thing for us.

Adding Locations to the Lexer
Since locations need to report the line and column range for errors, the lexer needs to
track the current line and column each time it scans a token and return that information
to the parser in yylloc. Fortunately, a little-known feature called YY_USER_ACTION makes
that very simple. If you define the macro YY_USER_ACTION in the first part of your lexer,
it will be invoked for each token recognized by yylex, before calling the action code.
We define a new variable, yycolumn, to remember the current column number, and we
define YY_USER_ACTION as follows in the definition section of the lexer:

%code {
/* handle locations */
int yycolumn = 1;

#define YY_USER_ACTION yylloc.first_line = yyloc.last_line = yylineno; \
 yylloc.first_column = yycolumn; yylloc.last_column = yycolumn+yyleng-1; \
 yycolumn += yyleng;
%}

Since yyleng, the length of the token, is already set, we can use that to fill in yylloc and
update yycolumn. In a few cases (comments and whitespace), the token isn’t returned
to the parser and the lexer keeps going, but it doesn’t hurt to fill in yylloc anyway. This
takes care of the vast majority of location bookkeeping.

The last thing we have to do is to reset yycolumn to 1 whenever there’s a newline. (Flex
already handles yylineno for us.)

NOT[\t]+EXISTS { yylval.subtok = 1; return EXISTS; }

ON[\t]+DUPLICATE { return ONDUPLICATE; } /* hack due to limited lookahead */

<COMMENT>\n { yycolumn = 1; }
<COMMENT><<EOF>> { yyerror("unclosed comment"); }

[\t] /* whitespace */
\n { yycolumn = 1; }

In each pattern that can match a newline, we’ve separated out the \n into a separate
pattern and set yycolumn to 1. We’ve also simplified the patterns for NOT EXISTS and

Locations | 201

Download at Boykma.Com

ON DUPLICATE so they don’t allow newlines. The alternative would be to manually rescan
the tokens to check for newlines and set yycolumn to the number of characters after the
newline.

That’s enough to report errors with the exact line and column numbers. Since it’s so
easy to do, there’s little reason not to use locations in your bison parsers even if you
don’t need the exact column numbers of each token and rule.

More Sophisticated Locations with Filenames
Most of the parsers we’ve written can handle more than one input file. How hard would
it be to include the filename in the location data? Not very, it turns out. We have to
define our own YYLTYPE that includes a pointer to the filename. We redefine the parser
macro YYLLOC_DEFAULT that combines the location information when the parser reduces
a rule, change the code in YY_USER_ACTION in the lexer to put the filename into yylloc
for each token, and make a few other small changes to remember the name of the file
the parser is reading. We add this section to the definition section of the parser:

%code requires {

char *filename; /* current filename here for the lexer */

typedef struct YYLTYPE {
 int first_line;
 int first_column;
 int last_line;
 int last_column;
 char *filename;
} YYLTYPE;
define YYLTYPE_IS_DECLARED 1 /* alert the parser that we have our own definition */

define YYLLOC_DEFAULT(Current, Rhs, N) \
 do \
 if (N) \
 { \
 (Current).first_line = YYRHSLOC (Rhs, 1).first_line; \
 (Current).first_column = YYRHSLOC (Rhs, 1).first_column; \
 (Current).last_line = YYRHSLOC (Rhs, N).last_line; \
 (Current).last_column = YYRHSLOC (Rhs, N).last_column; \
 (Current).filename = YYRHSLOC (Rhs, 1).filename; \
 } \
 else \
 { /* empty RHS */ \
 (Current).first_line = (Current).last_line = \
 YYRHSLOC (Rhs, 0).last_line; \
 (Current).first_column = (Current).last_column = \
 YYRHSLOC (Rhs, 0).last_column; \
 (Current).filename = NULL; /* new */ \
 } \
 while (0)
}

202 | Chapter 8: Error Reporting and Recovery

Download at Boykma.Com

Rather than try to write the structure and macro from scratch, I looked at the generated
C code for the first version of the parser with locations, copied the definitions of
YYLTYPE and YYLLOC_DEFAULT, and modified them a little. The default declaration of
YYLTYPE is enclosed in #if !YYLTYPE_IS_DECLARED, and the default declaration of
YYLLOC_DEFAULT is enclosed in #ifndef YYLLOC_DEFAULT, so our new versions have to
define them to turn off the default versions.

This code is enclosed in a %code requires { } block. The normal %code { %} block puts
the code after the default definition of YYLTYPE, which is too late in the generated C
program, and doesn’t put a copy on the generated header file. The requires tells bison
to copy the code ahead of the default versions and also into the header file.

This version of YYLTYPE includes the four standard fields, as well as a pointer to the
filename. Then comes a definition of YYLTYPE_IS_DECLARED to prevent the standard ver-
sion of YYLTYPE.

The long YYLLOC_DEFAULT macro copies location information from the RHS of a rule to
the new LHS symbol. The three arguments to the macro are Current, the location in-
formation for the LHS; Rhs, the address of the first RHS location structure; and N, the
number of symbols on the RHS. The internal macro YYRHSLOC returns the location
structure for a particular RHS symbol. If N is nonzero, that is, there’s at least one RHS
symbol, it copies the relevant information from the first and Nth symbols. The do ...
while(0) is a C idiom to make the macro expansion a statement that will parse correctly
when the macro is followed by a semicolon. (Remember that there’s no semicolon after
the } at the end of a block such as the else clause here.) Only the two lines marked
new are new; the rest is copied from the default YYLLOC_DEFAULT.

Having added the filename to the YYLTYPE structure, we add small amounts of code to
yyerror and lyyerror to report the filename and to main() to set filename to the filename
or the string (stdin) before starting the parser.

void
yyerror(char *s, ...)
{
 va_list ap;
 va_start(ap, s);

 if(yylloc.first_line)
 fprintf(stderr, "%s:%d.%d-%d.%d: error: ", yylloc.filename, yylloc.first_line,
 yylloc.first_column, yylloc.last_line, yylloc.last_column);
 vfprintf(stderr, s, ap);
 fprintf(stderr, "\n");

}

void
lyyerror(YYLTYPE t, char *s, ...)
{
 va_list ap;
 va_start(ap, s);

Locations | 203

Download at Boykma.Com

 if(t.first_line)
 fprintf(stderr, "%s:%d.%d-%d.%d: error: ", t.filename, t.first_line,
 t.first_column, t.last_line, t.last_column);
 vfprintf(stderr, s, ap);
 fprintf(stderr, "\n");
}

main(int ac, char **av)
{
 extern FILE *yyin;

 if(ac > 1 && !strcmp(av[1], "-d")) {
 yydebug = 1; ac--; av++;
 }

 if(ac > 1) {
 if((yyin = fopen(av[1], "r")) == NULL) {
 perror(av[1]);
 exit(1);
 }
 filename = av[1];
 } else
 filename = "(stdin)";

 if(!yyparse())
 printf("SQL parse worked\n");
 else
 printf("SQL parse failed\n");
} /* main */

The change to the lexer adds just one line—just copy filename into yylloc.filename in
the YY_USER_ACTION macro:

#define YY_USER_ACTION yylloc.filename = filename; \
 yylloc.first_line = yylloc.last_line = yylineno; \
 yylloc.first_column = yycolumn; yylloc.last_column = yycolumn+yyleng-1; \
 yycolumn += yyleng;

Now our compiler reports the filename and the line and column. In a compiler with
include statements that switch files within a single parse, the reports with this technique
wouldn’t be completely accurate, since they would report the first filename only if an
error spanned input from two files, but the additional code to remember two filenames
in YYLTYPE should be obvious.

Error Recovery
We concentrated on error reporting in the previous section; in this section, we discuss
the problem of error recovery. When an error is detected, the bison parser is left in an
ambiguous position. It is unlikely that meaningful processing can continue without
some adjustment to the existing parser stack.

204 | Chapter 8: Error Reporting and Recovery

Download at Boykma.Com

Depending on the environment in which you’ll be using your parser, error recovery
may not always be necessary if the environment makes it easy to correct the error and
rerun the parser. In other environments such as a compiler, it may be possible to recover
from the error enough to continue parsing and look for additional errors, stopping the
compiler at the end of the parse stage. This technique can improve the productivity of
the programmer by shortening the edit-compile-test cycle, since several errors can be
repaired in each iteration of the cycle.

Bison Error Recovery
Bison has some provisions for error recovery, which are available by using the special-
purpose error token. Essentially, the error token is used to find a synchronization
point in the grammar from which it is likely that processing can continue. That’s
likely, not certain. Sometimes attempts at recovery will not remove enough of the er-
roneous state to continue, and the error messages will cascade. Either the parser will
reach a point from which processing can continue or the entire parser will abort.

After reporting a syntax error, a bison parser discards symbols from the parse stack
until it finds a state in which it can shift an error token. It then reads and discards input
tokens until it finds one that can follow the error token in the grammar. This latter
process is called resynchronizing. It then resumes parsing in a recovering state, which
doesn’t report subsequent parse errors. Once it has shifted three tokens successfully,
it presumes that recovery is complete, leaves the recovering state, and resumes normal
parsing.

This is the basic “trick” to bison error recovery—attempting to move forward in the
input stream far enough that the new input is not adversely affected by the older input.

Error recovery is easier with proper language design. Modern programming languages
use statement terminators, which serve as convenient synchronization points. For in-
stance, when parsing a C grammar, a logical synchronizing character is the semicolon.
Error recovery can introduce other problems, such as missed declarations if the parser
skips over a declaration looking for a semicolon, but these can also be included in the
overall error recovery scheme.

In the SQL parser, the simplest place to resynchronize is at the semicolon at the end of
each SQL statement. These rules added to the parser resynchronize at the semicolon
that terminates each statement:

stmt_list: error ';' error in the first statement
 | stmt_list error ';' error in a subsequent statement
 ;

The potential for cascading errors caused by lost state (e.g., discarded variable decla-
rations) can make a strategy that throws away large portions of the input stream inef-
fective. One mechanism for counteracting the problem of cascading errors is to count
the number of error messages reported and abort the compilation process when the

Bison Error Recovery | 205

Download at Boykma.Com

count exceeds some arbitrary number. For example, some C compilers abort after re-
porting 10 errors within a file.

Like any other bison rule, one that contains error can be followed with action code.
One could clean up after the error, reinitialize data state, or otherwise recover to a point
where processing can continue. For example, the previous error recovery fragment
might say the following:

stmt_list: error ';' { yyerror("First statement discarded, try again"); }
 | stmt_list error ';' { yyerror("Current statement discarded, try again"); }
 ;

Freeing Discarded Symbols
Bison’s error recovery involves popping symbols off the internal parse stack. Each
symbol can have a semantic value, and if those semantic values contain pointers to
allocated storage or data structures, storage leaks and data corruption can occur. The
%destructor declaration tells bison what to do when it pops a symbol with a semantic
value. Its syntax is as follows:

%destructor { ... code ... } symbols or <types>

This tells the parser to execute the code each time it pops one of the named symbols
or a symbol whose value is of the given type. There can be as many %destructor dec-
larations as there are different treatments of discarded symbols. The type <*> is a catch-
all for any type of symbol with a defined type but no other destructor.

In our SQL parser, the only symbols that need special treatment are the ones with
<strval> values, which are just strings that need to be freed:

 /* free discarded tokens */
%destructor { printf ("free at %d %s\n",@$.first_line, $$); free($$); } <strval>

This code reports what it’s doing, including the location reference, which is useful for
debugging but perhaps overkill for a production parser.

Error Recovery in Interactive Parsers
When a bison parser is designed to read directly from the console, a few tricks can
smooth the error recovery. A typical parser reads a sequence of commands:

commands: /* empty */
 | commands command
 ;

command: . . .
 | error {
 yyclearin /* discard lookahead */
 yyerrok;
 printf("Enter another command\n");
 }
 ;

206 | Chapter 8: Error Reporting and Recovery

Download at Boykma.Com

The macro yyclearin discards any lookahead token, and yyerrok tells the parser to
resume normal parsing, so it will start anew with the next command the user types.

If your code reports its own errors, your error routines can use the bison macro
YYRECOVERING() to test whether the parser is trying to resynchronize, in which case you
shouldn’t print any more errors, for example:

warning(char *err1, char *err2)
{
 if (YYRECOVERING())
 return; /* no report at this time */
 . . .
}

Where to Put Error Tokens
The proper placement of error tokens in a grammar is a black art with two conflicting
goals. You want make it likely that the resynchronization will succeed, so you want
error tokens in the highest-level rules in the grammar, maybe even the start rule, so
there will always be a rule to which the parser can recover. On the other hand, you
want to discard as little input as possible before recovering, so you want the error tokens
in the lowest-level rules to minimize the number of partially matched rules the parser
has to discard during recovery. The most practical recovery points are places where
punctuation delimits elements of a list.

If your top-level rule matches a list (e.g., the list of statements in the SQL parser) or a
list of declarations and definitions in a C compiler, you can make one of the alternatives
for a list entry contain error, as in the previous command and SQL examples. This
applies equally for relatively high-level lists such as the list of statements in a C function.

For example, since C statements are punctuated by semicolons and braces, in a C
compiler you might write this:

 stmt: . . .
 | RETURN expr ';'
 | '{' opt_decls stmt_list '}'
 | error ';'
 | error '}'
 ;

The two error rules tell the parser that it should start looking for the next statement
after a ; or }.

You can also put error rules at lower levels, for example, as a rule for an expression,
but unless the language provides punctuation or keywords that make it easy to tell
where the expression ends, the parser can rarely recover at such a low level.

Bison Error Recovery | 207

Download at Boykma.Com

Compiler Error Recovery
In the previous section we described the mechanisms bison provides for error recovery.
In this section we discuss external recovery mechanisms provided by the programmer.

Error recovery depends upon semantic knowledge of the grammar rather than just
syntactic knowledge. This greatly complicates complex recovery within the grammar.

It may be desirable for the recovery routine to scan the input and, using a heuristic,
perform appropriate error recovery. For instance, a C compiler writer might decide that
errors encountered during the declaration section of a code block are best recovered
from by skipping the entire block rather than continuing to report additional errors.
She might also decide that an error encountered during the code section of the code
block need only skip to the next semicolon. A truly ambitious writer of compilers or
interpreters might want to report the error and attempt to describe potential correct
solutions. Some recovery schemes have tried to insert new tokens into the input stream,
based on what the parser would have been able to accept at the point where the error
was detected. They might do some trial parses to see whether the proposed correction
does indeed allow the parser to keep reading from the input.

There is a great deal of literature on error correction and recovery, most dating from
the era of batch computation when the time between program runs might be measured
in hours or days, and compiler developers tried to guess what sorts of errors program-
mers might make and how to fix them. I can report from experience that they didn’t
guess very well, and errors other than the most trivial invariably baffled the correction
schemes. On today’s computers, the interval is more likely to be seconds, so rather than
trying to guess the programmer’s intentions and continue after severe errors, it makes
more sense to recover as quickly as possible to a state where the programmer can revise
the input and rerun the compiler.

Exercises
1. Add error recovery to the calculator in Chapter 3. The most likely place to recover

is at the EOL token at the end of each statement. Don’t forget destructors to free up
ASTs, symbols, and symbol lists.

2. (Term project.) Bison’s error recovery works by discarding input tokens until it
comes up with something that is syntactically correct. Another approach inserts
rather than discards tokens, because in many cases it is easy to predict what token
must come next. For example, in a C program, every break and continue must be
followed by a semicolon, and every case must be preceded by a semicolon or a
close brace. How hard would it be to augment a bison parser so that in the case of
an input error it can suggest appropriate tokens to insert? You’ll need to know
more about the insides of bison for this exercise. The bison parser skeleton has
some undocumented code that tries to suggest valid tokens you can start with.

208 | Chapter 8: Error Reporting and Recovery

Download at Boykma.Com

CHAPTER 9

Advanced Flex and Bison

Bison was originally a version of yacc, the original Unix parser generator that generated
LALR parsers in C. In recent years it’s grown a lot of new features. We discuss some
of the most useful ones here.

Pure Scanners and Parsers
A flex scanner and bison parser built in the usual way is not reentrant and can parse
only one input stream at a time. That’s because both the scanner and the parser use
static data structures to keep track of what they’re doing and to communicate with
each other and with the calling program. Both flex and bison can create “pure” reentrant
code, which replaces the static data structures with one passed as an argument to each
routine in the scanner and parser. This both allows recursive calls to the scanner and
parser, which is occasionally useful, and allows scanners and parsers to be used in
multithreaded programs where there may be several parses going on at once in different
threads.

As a demonstration, we’ll take the calculator from Chapter 3 and modify it to use a
pure scanner and parser. Rather than having the parser execute each line of code im-
mediately, it’ll return the AST to the caller. As is usual in reentrant programs, the calling
routine allocates a structure with space for the per-instance data and passes it along in
each call to the scanner and parser.

Unfortunately, as of the time this book went to press (mid-2009), the code for flex pure
scanners and yacc pure scanners is a mess. Bison’s calling sequence for a pure
yylex() is different from flex’s, and the way they handle per-instance data is different.
It’s possible to paper over the problems in the existing code and persuade pure scanners
and parsers to work together, which is what we will do in this chapter, but before doing
so, check the latest flex and bison documentation. Most of the incompatibilities could
be fixed by relatively simple changes to the code skeletons used to create scanners and
parsers, and with any luck someone will have done it so you don’t have to do it.

209

Download at Boykma.Com

Pure Scanners in Flex
A single scanning job may involve many calls to yylex() because it returns tokens to
the calling program. Since the scanner’s state has to be saved between calls, you have
to manage the per-scanner data yourself. Flex provides routines that create and destroy
a scanner’s context, as well as routines to access scanner values that used to be in static
variables like yyin and yytext to allow routines outside yylex() to get and set them.

 yyscan_t scaninfo; a pointer to the per-instance scanner data

 int yylex_init(&scaninfo); create a scanner
 int yylex_init_extra(userstuff, &scaninfo); or create a scanner with a pointer to user data

 yyset_in(stdin, scaninfo); set the input file and other parameters

 while(...) {
 tok = yylex(scaninfo); call until done
 }

 yylex_destroy(scaninfo); free the scanner data

The yyscan_t structure contains all of the per-scanner state such as the input and output
files and pointers to remember where in the buffered input to resume scanning. It also
includes a stack of pointers to YY_BUFFER_STATE structures to track the active input
buffer. (As we saw in Chapter 2, the built-in buffer stack isn’t too useful since you
usually need to remember extra per-buffer information.)

The userstuff argument to yylex_init_extra allows you to provide your own per-
instance data to the scanner, such as the address of the symbol table for it to use. It is
a value of type YY_EXTRA_TYPE, by default defined to be void * but easily overridden
with %option extra-type. The per-instance data is invariably stored in a structure, so
the userstuff is a pointer to that structure. As we’ll see in a moment, in one line you
can retrieve it within the scanner and put it in a pointer variable with a reasonable name
and type.

Within the scanner, flex defines macros for yytext, yyleng, and a few other fields that
refer to the instance data. The values of yylineno and yycolumn, which is a variable not
present in nonreentrant scanners, are stored in the current buffer structure, making it
easier to track line and column information in multiple input files, while the rest are in
the yyscan_t structure. Flex maintains yylineno as it does in nonreentrant scanners,
but the only thing it does automatically to yycolumn is set it to zero when it sees a \n
character, so you still have to track the column yourself using the techniques in
Chapter 8.

Example 9-1 shows the word count program from Chapter 2, modified to use a pure
scanner.

210 | Chapter 9: Advanced Flex and Bison

Download at Boykma.Com

Example 9-1. Pure version of word count program

/* pure version of word count program */
%option noyywrap nodefault reentrant
%{
struct pwc { our per-scanner data
 int chars;
 int words;
 int lines;
};
%}
%option extra-type="struct pwc *"

%%
%{ this code goes at the top of yylex
 struct pwc *pp = yyextra; yyextra is a flex-defined macro
%}

[a-zA-Z]+ { pp->words++; pp->chars += strlen(yytext); }
\n { pp->chars++; pp->lines++; }
. { pp->chars++; }

%%

The three variables to count characters, words, and lines are now placed in a structure,
with a copy allocated for each instance of the scanner and with %option extra-type
making the userstuff in flex’s scanner a pointer to that structure.

The first thing in the rules section is a line of code that flex will place at the top of
yylex, after its own variable definitions but before any executable code. This line lets
us declare a pointer to our own instance data and initialize it to yyextra, which is a
macro provided by flex that refers to the extra data field in the scanner’s current per-
instance data. In the rules themselves, what were references to static variables are now
references to our instance data.

main(argc, argv)
int argc;
char **argv;
{
 struct pwc mypwc = { 0, 0, 0 }; /* my instance data */
 yyscan_t scanner; /* flex instance data */

 if(yylex_init_extra(&mypwc, &scanner)) {
 perror("init alloc failed");
 return 1;
 }

 if(argc > 1) {
 FILE *f;

 if(!(f = fopen(argv[1], "r"))) {
 perror(argv[1]);
 return (1);
 }

Pure Scanners and Parsers | 211

Download at Boykma.Com

 yyset_in(f, scanner);
 } else
 yyset_in(stdin, scanner);

 yylex(scanner);
 printf("%8d%8d%8d\n", mypwc.lines, mypwc.words, mypwc.chars);

 if(argc > 1)
 fclose(yyget_in(scanner));

 yylex_destroy(scanner);
}

The main routine declares and initializes mypwc, our own instance data, and declares
scanner, which will be the flex instance data. The call to yylex_init_extra takes a
pointer to scanner, so it can fill it in with a pointer to the newly allocated instance, and
the call returns 0 for success or 1 for failure (the malloc for the instance data failed).

If there’s a file argument, we open the file and use yyset_in to store it in the yyin-ish
field in the scanner data. Then we call yylex, passing it the flex instance data; print out
the results that the scanner stored in our own instance data; and then free and deallocate
the scanner.

This was more work than a regular nonpure scanner, but the changes were for the most
part mechanical: move static data into a structure, change references to the static data
to references to the structure, and add the code to create and destroy the scanner
instance.

Pure Parsers in Bison
Pure parsers are a little easier to create than pure scanners, because an entire bison parse
happens in a single call to yyparse. Hence, the parser can create its per-instance data
at the start of the parse, do the parsing work, and then free it without needing explicit
programmer help. The parser does typically need some application instance data,
passed as an argument to yyparse. The static variables used to communicate with the
scanner—yylval and, if the parser uses locations, yyloc—become instance variables
that have to be passed to yylex, probably along with the application instance data.

Bison will create a pure parser if it sees the %define api.pure (formerly %pure_parser)
declaration. This declaration makes the parser reentrant. To get a pure parser started,
you pass in a pointer to the application per-instance data. The contents of the
%parse-param declaration are placed between the parentheses in the definition of
yyparse(), so you can declare as many arguments as you want, although one pointer
to the per-instance data is usually all you need:

%define api.pure
%parse-param { struct pureparse *pp }

Pure parsers also change the calling sequence to yylex(), passing as arguments pointers
to the current copies of yylval and, if locations are in use, yylloc.

212 | Chapter 9: Advanced Flex and Bison

Download at Boykma.Com

/* generated calls within the parser */
token = yylex(YYSTYPE *yylvalp); without locations
token = yylex(YYSTYPE *yylvalp, YYLTYPE *yylocp); with them

If you want to pass application data, you can declare it with %lex-param{ } or by #define
YYLEX_PARAM. An ill-advised overoptimization strips the argument to %lex-param to the
last token in the braces, so define YYLEX_PARAM instead. (The documentation shows that
the implementer assumed you’d put a declaration there, as in parse-param, but since
the argument for a flex scanner has to be the scanner’s yyscan_t, I always fetch it from
in a field in the application per-instance data.)

%code {
#define YYLEX_PARAM pp->scaninfo
%}
%%
 /* generated calls within the parser */
 token = yylex(YYSTYPE *yylvalp, pp->scaninfo); without locations
 token = yylex(YYSTYPE *yylvalp, YYLTYPE *yylocp, pp->scaninfo); with them

When the generated parser encounters a syntax error, it calls yyerror(), passing a
pointer to the current location, if the parser uses locations, and the parser parameter
in addition to the usual error message string: *

 yyerror(struct pureparse *pp, "Syntax error"); without locations
 yyerror(YYLTYPE &yyllocp,struct pureparse *pp, "Syntax error"); with them

If you’re using a handwritten scanner, these are all the hooks you need for a pure parser.
When you call internal routines from the scanner and parser, you’ll want to pass along
the instance data, as we’ll see later in this chapter in the reentrant calculator. But since
we’re using a flex scanner, first we have to deal with flex and bison’s incompatible
calling sequence.

Using Pure Scanners and Parsers Together
If you compare the calling sequence for yylex in pure scanners and pure parsers, you’ll
note that they’re incompatible. Flex wants the first argument to be the scanner instance
data, but bison makes the first argument a pointer to yylval. While it is possible to use
some undocumented C preprocessor symbols to fudge this, the maintainer of flex took
pity on programmers and added the bison-bridge option to make its pure calling se-
quence compatible with bison’s. If you use %option bison-bridge, the declaration of
yylex becomes the following:

 int yylex(YYSTYPE* lvalp, yyscan_t scaninfo);

If you use %option bison-bridge bison-locations, the declaration is as follows:

 int yylex (YYSTYPE* lvalp, YYLTYPE* llocp, yyscan_t scaninfo);

* If you pass multiple arguments to the parser, each one has to be in a separate %parse-param. If you put two
arguments in the same %parse-param, bison won't report an error but the second parameter will disappear.

Pure Scanners and Parsers | 213

Download at Boykma.Com

Flex defines the macros yylval and (optionally) yylloc, which are copies of the argu-
ments, but they are both pointers to the bison value union and location structure, so
yylval.field and yylloc.first_line have to become yylval->field and yylloc-
>first_line. This is also a bug, but it’s documented in the flex and bison manuals, so
it is unlikely to change.

Multiple Instances of Multiple Scanners and Parsers
The discussion of pure parsing in this chapter covers the way you can have several
copies of a scanner or parser, all that use the same set of rules. It’s also possible to have
several instances of different scanners or parsers in a single program. The sections
“Multiple Lexers in One Program” on page 127 and “Variant and Multiple Gram-
mars” on page 163 describe how to put several different scanners parsers into a single
program, renaming their symbols with a prefix other than “yy”. You can use the same
features to rename pure scanners and parsers and then call them as needed. This level
of complexity will be a challenge to debug, but the features are there if you need them.

A Reentrant Calculator
To make the calculator from Chapter 3 reentrant, most of the changes are mechanical,
putting static data into per-instance structures. Rather than executing the parsed ASTs
within the parser, this version parses one expression or function definition at a time,
and it returns the ASTs to the caller, where they can be run immediately or saved for
later. The scanner, on the other hand, is managed as a single session, used for all the
calls to yyparse, so that there’s no problem of losing buffered input each time the parser
restarts. This means that the program creates the scanner context when it starts, and
then it passes the same context to the parser each time. Example 9-2 shows the modified
header file for the calculator.

Example 9-2. Reentrant calc header file purecalc.h

/*
 * Declarations for a calculator, pure version
 */

/* per-parse data */
struct pcdata {
 yyscan_t scaninfo; /* scanner context */
 struct symbol *symtab; /* symbols for this parse */
 struct ast *ast; /* most recently parsed AST */
};

The new structure pcdata contains the application context for the parser. It points to
the symbol table, allowing different parses to have different namespaces; the scanner
context that the parser passes to yylex; and a place for the parser to return the AST that
it parsed. (Remember that the value of yyparse is 1 or 0 to report whether the parse
succeeded, so it can’t directly return the AST.)

214 | Chapter 9: Advanced Flex and Bison

Download at Boykma.Com

The changes in the rest of the header add an initial context argument to all of the
functions, both the ones specific to the calculator and yyerror.

/* symbol table */
struct symbol { /* a variable name */
 char *name;
 double value;
 struct ast *func; /* AST for the function */
 struct symlist *syms; /* list of dummy args */
};

/* simple symtab of fixed size */
#define NHASH 9997
struct symbol symtab[NHASH];

struct symbol *lookup(struct pcdata *, char*);

/* list of symbols, for an argument list */
struct symlist {
 struct symbol *sym;
 struct symlist *next;
};

struct symlist *newsymlist(struct pcdata *, struct symbol *sym, struct symlist *next);
void symlistfree(struct pcdata *, struct symlist *sl);

/* node types
 * + - * / |
 * 0-7 comparison ops, bit coded 04 equal, 02 less, 01 greater
 * M unary minus
 * L statement list
 * I IF statement
 * W WHILE statement
 * N symbol ref
 * = assignment
 * S list of symbols
 * F built in function call
 * C user function call
 */

enum bifs { /* built-in functions */
 B_sqrt = 1,
 B_exp,
 B_log,
 B_print
};

/* nodes in the abstract syntax tree */
/* all have common initial nodetype */

 ... all nodes unchanged from the original version ...

/* build an AST */
struct ast *newast(struct pcdata *, int nodetype, struct ast *l, struct ast *r);
struct ast *newcmp(struct pcdata *, int cmptype, struct ast *l, struct ast *r);

Pure Scanners and Parsers | 215

Download at Boykma.Com

struct ast *newfunc(struct pcdata *, int functype, struct ast *l);
struct ast *newcall(struct pcdata *, struct symbol *s, struct ast *l);
struct ast *newref(struct pcdata *, struct symbol *s);
struct ast *newasgn(struct pcdata *, struct symbol *s, struct ast *v);
struct ast *newnum(struct pcdata *, double d);
struct ast *newflow(struct pcdata *, int nodetype, struct ast *cond, struct ast *tl,
 struct ast *tr);

/* define a function */
void dodef(struct pcdata *, struct symbol *name, struct symlist *syms, struct ast *stmts);

/* evaluate an AST */
double eval(struct pcdata *, struct ast *);

/* delete and free an AST */
void treefree(struct pcdata *, struct ast *);

/* interface to the scanner */
void yyerror(struct pcdata *pp, char *s, ...);

The scanner has the reentrant and bison-bridge options to make a reentrant bison-
compatible scanner. For the first time we also tell flex to create a header file analogous
to the one that bison creates. The file contains declarations of the various routines used
to get and set variables in a scanner context, as well as the definition of yyscan_t that
the parser will need.

Don’t Include the Scanner Header in Your Scanner!
If you create a scanner header file such as purecalc.lex.h in this example, be sure not
to include the header directly or indirectly into the scanner itself. For some reason, the
header has #undefs for several internal scanner macros, which will cause attempts to
compile the scanner to fail with cryptic error messages about undefined variables.
(Guess how I found this out.)

Either protect the #include statements with #ifndef/#define lines if you include the
scanner header file in a common header file or do what this example does and include
it directly only in the files that need it.

Example 9-3. Reentrant calculator scanner purecalc.l

/* recognize tokens for the calculator */
/* pure scanner and parser version */
/* $Header: /usr/home/johnl/flnb/RCS/ch09.tr,v 1.4 2009/05/19 18:28:27 johnl Exp $ */
%option noyywrap nodefault yylineno reentrant bison-bridge

%option header-file="purecalc.lex.h"

%{
#include "purecalc.tab.h"
#include "purecalc.h"
%}

216 | Chapter 9: Advanced Flex and Bison

Download at Boykma.Com

/* float exponent */
EXP ([Ee][-+]?[0-9]+)

%%
%{
 struct pcdata *pp = yyextra;
%}
 /* single character ops */
"+" |
"-" |
"*" |
"/" |
"=" |
"|" |
"," |
";" |
"(" |
")" { return yytext[0]; }

 /* comparison ops */
">" { yylval->fn = 1; return CMP; }
"<" { yylval->fn = 2; return CMP; }
"<>" { yylval->fn = 3; return CMP; }
"==" { yylval->fn = 4; return CMP; }
">=" { yylval->fn = 5; return CMP; }
"<=" { yylval->fn = 6; return CMP; }

 /* keywords */

"if" { return IF; }
"then" { return THEN; }
"else" { return ELSE; }
"while" { return WHILE; }
"do" { return DO; }
"let" { return LET;}

 /* built-in functions */
"sqrt" { yylval->fn = B_sqrt; return FUNC; }
"exp" { yylval->fn = B_exp; return FUNC; }
"log" { yylval->fn = B_log; return FUNC; }
"print" { yylval->fn = B_print; return FUNC; }

 /* names */
[a-zA-Z][a-zA-Z0-9]* { yylval->s = lookup(pp, yytext); return NAME; }

[0-9]+"."[0-9]*{EXP}? |
"."?[0-9]+{EXP}? { yylval->d = atof(yytext); return NUMBER; }

"//".*
[\t] /* ignore whitespace */
\\n printf("c> "); /* ignore line continuation */
"\n" { return EOL; }

. { yyerror(pp, "Mystery character %c\n", *yytext); }

Pure Scanners and Parsers | 217

Download at Boykma.Com

<<EOF>> { exit(0); }
%%

Example 9-3 shows the scanner with modifications to make it reentrant. A line of code
at the top of the rules puts the pointer to the application instance data accessed via
macro yyextra into variable pp, which is of the right type in case we need to access fields
in it. The references to yylval are adjusted to use it as a pointer, and the call to
yyerror passes the instance data.

At the end of the lexer is an <<EOF>> rule that just exits. This is not a particularly elegant
way to end the program, but for our purposes it will do. Possible alternative approaches
to ending the program are discussed later.

Example 9-4 shows the parser, modified to be reentrant. It has two kinds of changes.
Some of them are the mechanical changes to handle explicit state; the rest change the
parser to handle one statement at a time.

Example 9-4. Reentrant calculator parser purecalc.y

/* calculator with AST */
%define api.pure
%parse-param { struct pcdata *pp }

%{
include <stdio.h>
include <stdlib.h>
%}

%union {
 struct ast *a;
 double d;
 struct symbol *s; /* which symbol */
 struct symlist *sl;
 int fn; /* which function */
}

%{
include "purecalc.lex.h"
include "purecalc.h"
#define YYLEX_PARAM pp->scaninfo
%}

/* declare tokens */
%token <d> NUMBER
%token <s> NAME
%token <fn> FUNC
%token EOL

%token IF THEN ELSE WHILE DO LET

%nonassoc <fn> CMP
%right '='
%left '+' '-'
%left '*' '/'

218 | Chapter 9: Advanced Flex and Bison

Download at Boykma.Com

%nonassoc '|' UMINUS

%type <a> exp stmt list explist
%type <sl> symlist

%start calc
%%

The parser file defines api.pure to generate a reentrant parser and uses parse-param to
declare that the parser now takes an argument, which is the pointer to the application
state. A few lines further down, a code block includes purecalc.lex.h, which is the
header generated by flex, and defines YYLEX_PARAM to pass the scanner state, which is
stored in the instance state, to the scanner.

calc: /* nothing */ EOL { pp->ast = NULL; YYACCEPT; }
 | stmt EOL { pp->ast = $1; YYACCEPT; }
 | LET NAME '(' symlist ')' '=' list EOL {
 dodef(pp, $2, $4, $7);
 printf("%d: Defined %s\n", yyget_lineno(pp->scaninfo),
 $2->name);
 pp->ast = NULL; YYACCEPT; }
 ;

The top-level rule is now calc, which handles an empty line, a statement that is parsed
into an AST, or a function definition that is stored in the local symbol table. Normally
a bison parser reads a token stream up to the end-of file-token. This parser uses
YYACCEPT to end the parse. When the parser ends, it leaves the scanner’s state un-
changed, so the next time the parser starts up, using the same scanner state, it resumes
reading where the previous parse left off. An alternate approach would be to have the
lexer return an end-of-file token when the user types a newline, which would also work;
in a situation like this, there’s no strong reason to prefer one approach or the other.

The rest of the parser is the same as the nonreentrant version, except that every call to
an external routine now passes the pointer to the instance state. As we will see, many
of the routines don’t do anything with the state variable, but it’s easier to pass it to all
of them than to try to remember which ones need it and which ones don’t.

stmt: IF exp THEN list { $$ = newflow(pp, 'I', $2, $4, NULL); }
 | IF exp THEN list ELSE list { $$ = newflow(pp, 'I', $2, $4, $6); }
 | WHILE exp DO list { $$ = newflow(pp, 'W', $2, $4, NULL); }
 | exp
;

list: /* nothing */ { $$ = NULL; }
 | stmt ';' list { if ($3 == NULL)
 $$ = $1;
 else
 $$ = newast(pp, 'L', $1, $3);
 }
 ;

exp: exp CMP exp { $$ = newcmp(pp, $2, $1, $3); }
 | exp '+' exp { $$ = newast(pp, '+', $1,$3); }

Pure Scanners and Parsers | 219

Download at Boykma.Com

 | exp '-' exp { $$ = newast(pp, '-', $1,$3);}
 | exp '*' exp { $$ = newast(pp, '*', $1,$3); }
 | exp '/' exp { $$ = newast(pp, '/', $1,$3); }
 | '|' exp { $$ = newast(pp, '|', $2, NULL); }
 | '(' exp ')' { $$ = $2; }
 | '-' exp %prec UMINUS { $$ = newast(pp, 'M', $2, NULL); }
 | NUMBER { $$ = newnum(pp, $1); }
 | FUNC '(' explist ')' { $$ = newfunc(pp, $1, $3); }
 | NAME { $$ = newref(pp, $1); }
 | NAME '=' exp { $$ = newasgn(pp, $1, $3); }
 | NAME '(' explist ')' { $$ = newcall(pp, $1, $3); }
;

explist: exp
 | exp ',' explist { $$ = newast(pp, 'L', $1, $3); }
;
symlist: NAME { $$ = newsymlist(pp, $1, NULL); }
 | NAME ',' symlist { $$ = newsymlist(pp, $1, $3); }
;
%%

Example 9-5 shows the helper functions, adjusted for a reentrant scanner and parser.
There is now a symbol table per instance state, so the routines that do symbol table
lookups need to get the symbol table pointer from the state structure.

Example 9-5. Helper functions purecalcfuncs.c

/*
 * helper functions for purecalc
 */
include <stdio.h>
include <stdlib.h>
include <stdarg.h>
include <string.h>
include <math.h>

include "purecalc.tab.h"
include "purecalc.lex.h"
include "purecalc.h"

/* symbol table */
/* hash a symbol */
static unsigned
symhash(char *sym)
{
 unsigned int hash = 0;
 unsigned c;

 while(c = *sym++) hash = hash*9 ^ c;

 return hash;
}

struct symbol *
lookup(struct pcdata *pp, char* sym)

220 | Chapter 9: Advanced Flex and Bison

Download at Boykma.Com

{
 struct symbol *sp = &(pp->symtab)[symhash(sym)%NHASH];
 int scount = NHASH; /* how many have we looked at */

 while(--scount >= 0) {
 if(sp->name && !strcmp(sp->name, sym)) { return sp; }

 if(!sp->name) { /* new entry */
 sp->name = strdup(sym);
 sp->value = 0;
 sp->func = NULL;
 sp->syms = NULL;
 return sp;
 }

 if(++sp >= pp->symtab+NHASH) sp = pp->symtab; /* try the next entry */
 }
 yyerror(pp, "symbol table overflow\n");
 abort(); /* tried them all, table is full */

}

struct ast *
newast(struct pcdata *pp, int nodetype, struct ast *l, struct ast *r)
{
 struct ast *a = malloc(sizeof(struct ast));

 if(!a) {
 yyerror(pp, "out of space");
 exit(0);
 }
 a->nodetype = nodetype;
 a->l = l;
 a->r = r;
 return a;
}

struct ast *
newnum(struct pcdata *pp, double d)
{
 struct numval *a = malloc(sizeof(struct numval));

 if(!a) {
 yyerror(pp, "out of space");
 exit(0);
 }
 a->nodetype = 'K';
 a->number = d;
 return (struct ast *)a;
}

struct ast *
newcmp(struct pcdata *pp, int cmptype, struct ast *l, struct ast *r)
{
 struct ast *a = malloc(sizeof(struct ast));

Pure Scanners and Parsers | 221

Download at Boykma.Com

 if(!a) {
 yyerror(pp, "out of space");
 exit(0);
 }
 a->nodetype = '0' + cmptype;
 a->l = l;
 a->r = r;
 return a;
}

struct ast *
newfunc(struct pcdata *pp, int functype, struct ast *l)
{
 struct fncall *a = malloc(sizeof(struct fncall));

 if(!a) {
 yyerror(pp, "out of space");
 exit(0);
 }
 a->nodetype = 'F';
 a->l = l;
 a->functype = functype;
 return (struct ast *)a;
}

struct ast *
newcall(struct pcdata *pp, struct symbol *s, struct ast *l)
{
 struct ufncall *a = malloc(sizeof(struct ufncall));

 if(!a) {
 yyerror(pp, "out of space");
 exit(0);
 }
 a->nodetype = 'C';
 a->l = l;
 a->s = s;
 return (struct ast *)a;
}

struct ast *
newref(struct pcdata *pp, struct symbol *s)
{
 struct symref *a = malloc(sizeof(struct symref));

 if(!a) {
 yyerror(pp, "out of space");
 exit(0);
 }
 a->nodetype = 'N';
 a->s = s;
 return (struct ast *)a;
}

222 | Chapter 9: Advanced Flex and Bison

Download at Boykma.Com

struct ast *
newasgn(struct pcdata *pp, struct symbol *s, struct ast *v)
{
 struct symasgn *a = malloc(sizeof(struct symasgn));

 if(!a) {
 yyerror(pp, "out of space");
 exit(0);
 }
 a->nodetype = '=';
 a->s = s;
 a->v = v;
 return (struct ast *)a;
}

struct ast *
newflow(struct pcdata *pp, int nodetype, struct ast *cond, struct ast *tl, struct ast *el)
{
 struct flow *a = malloc(sizeof(struct flow));

 if(!a) {
 yyerror(pp, "out of space");
 exit(0);
 }
 a->nodetype = nodetype;
 a->cond = cond;
 a->tl = tl;
 a->el = el;
 return (struct ast *)a;
}

struct symlist *
newsymlist(struct pcdata *pp, struct symbol *sym, struct symlist *next)
{
 struct symlist *sl = malloc(sizeof(struct symlist));

 if(!sl) {
 yyerror(pp, "out of space");
 exit(0);
 }
 sl->sym = sym;
 sl->next = next;
 return sl;
}

void
symlistfree(struct pcdata *pp, struct symlist *sl)
{
 struct symlist *nsl;

 while(sl) {
 nsl = sl->next;
 free(sl);
 sl = nsl;
 }

Pure Scanners and Parsers | 223

Download at Boykma.Com

}

/* define a function */
void
dodef(struct pcdata *pp, struct symbol *name, struct symlist *syms, struct ast *func)
{
 if(name->syms) symlistfree(pp, name->syms);
 if(name->func) treefree(pp, name->func);
 name->syms = syms;
 name->func = func;
}

static double callbuiltin(struct pcdata *pp, struct fncall *);
static double calluser(struct pcdata *pp, struct ufncall *);

double
eval(struct pcdata *pp, struct ast *a)
{
 double v;

 if(!a) {
 yyerror(pp, "internal error, null eval");
 return 0.0;
 }

 switch(a->nodetype) {
 /* constant */
 case 'K': v = ((struct numval *)a)->number; break;

 /* name reference */
 case 'N': v = ((struct symref *)a)->s->value; break;

 /* assignment */
 case '=': v = ((struct symasgn *)a)->s->value =
 eval(pp, ((struct symasgn *)a)->v); break;

 /* expressions */
 case '+': v = eval(pp, a->l) + eval(pp, a->r); break;
 case '-': v = eval(pp, a->l) - eval(pp, a->r); break;
 case '*': v = eval(pp, a->l) * eval(pp, a->r); break;
 case '/': v = eval(pp, a->l) / eval(pp, a->r); break;
 case '|': v = fabs(eval(pp, a->l)); break;
 case 'M': v = -eval(pp, a->l); break;

 /* comparisons */
 case '1': v = (eval(pp, a->l) > eval(pp, a->r))? 1 : 0; break;
 case '2': v = (eval(pp, a->l) < eval(pp, a->r))? 1 : 0; break;
 case '3': v = (eval(pp, a->l) != eval(pp, a->r))? 1 : 0; break;
 case '4': v = (eval(pp, a->l) == eval(pp, a->r))? 1 : 0; break;
 case '5': v = (eval(pp, a->l) >= eval(pp, a->r))? 1 : 0; break;
 case '6': v = (eval(pp, a->l) <= eval(pp, a->r))? 1 : 0; break;

 /* control flow */
 /* null if/else/do expressions allowed in the grammar, so check for them */
 case 'I':

224 | Chapter 9: Advanced Flex and Bison

Download at Boykma.Com

 if(eval(pp, ((struct flow *)a)->cond) != 0) {
 if(((struct flow *)a)->tl) {
 v = eval(pp, ((struct flow *)a)->tl);
 } else
 v = 0.0; /* a default value */
 } else {
 if(((struct flow *)a)->el) {
 v = eval(pp, ((struct flow *)a)->el);
 } else
 v = 0.0; /* a default value */
 }
 break;

 case 'W':
 v = 0.0; /* a default value */

 if(((struct flow *)a)->tl) {
 while(eval(pp, ((struct flow *)a)->cond) != 0)
 v = eval(pp, ((struct flow *)a)->tl);
 }
 break; /* last value is value */

 case 'L': eval(pp, a->l); v = eval(pp, a->r); break;

 case 'F': v = callbuiltin(pp, (struct fncall *)a); break;

 case 'C': v = calluser(pp, (struct ufncall *)a); break;

 default: printf("internal error: bad node %c\n", a->nodetype);
 }
 return v;
}

static double
callbuiltin(struct pcdata *pp, struct fncall *f)
{
 enum bifs functype = f->functype;
 double v = eval(pp, f->l);

 switch(functype) {
 case B_sqrt:
 return sqrt(v);
 case B_exp:
 return exp(v);
 case B_log:
 return log(v);
 case B_print:
 printf("= %4.4g\n", v);
 return v;
 default:
 yyerror(pp, "Unknown built-in function %d", functype);
 return 0.0;
 }
}

Pure Scanners and Parsers | 225

Download at Boykma.Com

static double
calluser(struct pcdata *pp, struct ufncall *f)
{
 struct symbol *fn = f->s; /* function name */
 struct symlist *sl; /* dummy arguments */
 struct ast *args = f->l; /* actual arguments */
 double *oldval, *newval; /* saved arg values */
 double v;
 int nargs;
 int i;

 if(!fn->func) {
 yyerror(pp, "call to undefined function", fn->name);
 return 0;
 }

 /* count the arguments */
 sl = fn->syms;
 for(nargs = 0; sl; sl = sl->next)
 nargs++;

 /* prepare to save them */
 oldval = (double *)malloc(nargs * sizeof(double));
 newval = (double *)malloc(nargs * sizeof(double));
 if(!oldval || !newval) {
 yyerror(pp, "Out of space in %s", fn->name); return 0.0;
 }

 /* evaluate the arguments */
 for(i = 0; i < nargs; i++) {
 if(!args) {
 yyerror(pp, "too few args in call to %s", fn->name);
 free(oldval); free(newval);
 return 0;
 }

 if(args->nodetype == 'L') { /* if this is a list node */
 newval[i] = eval(pp, args->l);
 args = args->r;
 } else { /* if it's the end of the list */
 newval[i] = eval(pp, args);
 args = NULL;
 }
 }

 /* save old values of dummies, assign new ones */
 sl = fn->syms;
 for(i = 0; i < nargs; i++) {
 struct symbol *s = sl->sym;

 oldval[i] = s->value;
 s->value = newval[i];
 sl = sl->next;
 }

226 | Chapter 9: Advanced Flex and Bison

Download at Boykma.Com

 free(newval);

 /* evaluate the function */
 v = eval(pp, fn->func);

 /* put the dummies back */
 sl = fn->syms;
 for(i = 0; i < nargs; i++) {
 struct symbol *s = sl->sym;

 s->value = oldval[i];
 sl = sl->next;
 }

 free(oldval);
 return v;
}

void
treefree(struct pcdata *pp, struct ast *a)
{
 switch(a->nodetype) {

 /* two subtrees */
 case '+':
 case '-':
 case '*':
 case '/':
 case '1': case '2': case '3': case '4': case '5': case '6':
 case 'L':
 treefree(pp, a->r);

 /* one subtree */
 case '|':
 case 'M': case 'C': case 'F':
 treefree(pp, a->l);

 /* no subtree */
 case 'K': case 'N':
 break;

 case '=':
 free(((struct symasgn *)a)->v);
 break;

 case 'I': case 'W':
 free(((struct flow *)a)->cond);
 if(((struct flow *)a)->tl) free(((struct flow *)a)->tl);
 if(((struct flow *)a)->el) free(((struct flow *)a)->el);
 break;

 default: printf("internal error: free bad node %c\n", a->nodetype);
 }

Pure Scanners and Parsers | 227

Download at Boykma.Com

 free(a); /* always free the node itself */
}

The yyerror function now gets the current line number that was in the static
yylineno from the scanner state using yyget_lineno.

void
yyerror(struct pcdata *pp, char *s, ...)
{
 va_list ap;
 va_start(ap, s);

 fprintf(stderr, "%d: error: ", yyget_lineno(pp->scaninfo));
 vfprintf(stderr, s, ap);
 fprintf(stderr, "\n");
}

The main function needs to create instance data and link it together, putting a pointer
to the application instance data into the scanner instance via yylex_init_extra and
storing the pointer to the scanner instance into p.scaninfo. Then it allocates a fresh
symbol table, and it’s ready to start parsing.

In this simple example, each time it calls the parser, if the parser returns an AST, it
immediately evaluates the AST and frees it.

int
main()
{
 struct pcdata p = { NULL, 0, NULL };

 /* set up scanner */
 if(yylex_init_extra(&p, &p.scaninfo)) {
 perror("init alloc failed");
 return 1;
 }

 /* allocate and zero out the symbol table */
 if(!(p.symtab = calloc(NHASH, sizeof(struct symbol)))) {
 perror("sym alloc failed");
 return 1;
 }

 for(;;) {
 printf("> ");
 yyparse(&p);
 if(p.ast) {
 printf("= %4.4g\n", eval(&p, p.ast));
 treefree(&p, p.ast);
 p.ast = 0;
 }
 }
}

228 | Chapter 9: Advanced Flex and Bison

Download at Boykma.Com

Makefile for Pure Applications
This Makefile is slightly more complex than the ones in previous chapters, because the
purecalc scanner and parser each use a header file created from the other.

CFLAGS = -g

all: purewc purecalc

purewc: purewc.lex.o
 cc -g -o $@ purewc.lex.c

purewc.lex.c: purewc.l
 flex -opurewc.lex.c purewc.l

purecalc: purecalc.lex.o purecalc.tab.o purecalcfuncs.o
 cc -g -o $@ purecalc.tab.o purecalc.lex.o purecalcfuncs.o -lm

purecalc.lex.o: purecalc.lex.c purecalc.tab.h purecalc.h

purecalc.tab.o: purecalc.tab.c purecalc.lex.h purecalc.h

purecalc.lex.c purecalc.lex.h: purecalc.l
 flex -opurecalc.lex.c purecalc.l

purecalc.tab.c purecalc.tab.h: purecalc.y
 bison -vd purecalc.y

Push and Pull Parsers
Bison has an experimental push parse option that turns the flow of control inside out.
A regular pull parser starts up and repeatedly calls yylex to “pull” each token into the
parser. In a push parser, you create a yypstate parser state, and then you call the parser
for each token, passing it the token and the state to “push” the token into the parser.
The parser does what it can with the token, shifting, reducing, and calling any action
routines, and returns after each token. Push parsers are usually also reentrant and are
intended to be called from event routines in GUIs and the like. Since they’re experi-
mental, the details are likely to change; therefore consult the bison manual for the
current calling sequence.

There’s no flex push scanner at this point. Each call to a push scanner would pass it a
chunk of input text, which it would process and turn it into tokens. Since the flow of
control in a push scanner would be inside out relative to a pull scanner, each action
rather than returning would call the push parser, passing it the current token and value.
When the scanner ran out of input, it would remember where it was, either saving the
current position in the scanning automaton or just backing up to the end of the last
token recognized, saving the remaining text for next time, and returning to the caller.

There’s no reason that one couldn’t modify flex to do this. It’s open source, so if you’re
interested, you can do it!

Pure Scanners and Parsers | 229

Download at Boykma.Com

GLR Parsing

With Great Power Comes Great Responsibility
A big reason that parser generators such as yacc and bison became popular is that they
create parsers that are much more reliable than handwritten parsers. If you feed a
grammar to bison and it has no conflicts, you can be completely sure that the language
that the generated parser accepts is exactly the one described by the grammar. It won’t
have any of the holes that handwritten parsers tend to have, particularly when diag-
nosing erroneous input. If you use precedence declarations sparingly to resolve conflicts
in known situations, expression grammars, and if/then/else, you can still be sure that
your parser is handling the language as you think it is.

On the other hand, if you use GLR parsing, you can hand any grammar to bison, and
it will create a parser that parses something, resolving the conflicts at parse time. But
the more conflicts it has, the less likely it is that the language it’s parsing is the language
you want, and the less likely it is that your parser will resolve the conflicts the way you
want. Before switching to GLR, be sure you understand why your grammar has the
conflicts you’re expecting GLR to handle and that you understand how you are resolv-
ing them. Otherwise, you risk the embarrassing situation of finding out much later that
your parser gives up unexpectedly when it runs into a conflict you didn’t anticipate or
that because of an incorrect conflict resolution, the language it’s parsing isn’t quite the
one you wanted.

GLR parsers can in theory be extremely slow, since running N parses in parallel is
roughly N times as slow as a single parse, and a particularly ambiguous grammar could
split on each token. Useful GLR grammars typically have only a few ambiguities that
are resolved within a few tokens, so the performance is adequate.

A normal bison LALR parser doesn’t have to deal with shift/reduce or reduce/reduce
conflicts, since any conflicts were resolved one way or the other when the parser was
built. (See Chapter 8.) But when a GLR parser encounters a conflict, it conceptually
splits and continues both possible parses, with each parser consuming the input tokens
in parallel. When there are several conflicts, it can create a tree of partial parses, splitting
each time there is a conflict.

If the grammar is actually unambiguous and it just needs more lookahead than the
single token that LALR(1) offers, most of the parses will come to a point when they
can’t match the next input token and will fail. Bison silently discards a failing parse and
continues so long as there’s at least one other still active. If all possible parses fail, bison
reports an error in the usual way. For grammars like this, a GLR parser works very
much like a regular LALR parser, and you need only add a few lines to tell it to use the
GLR parser and tell it how many conflicts to expect.

On the other hand, if the grammar really is ambiguous, the parser will reach states
where there are two or more possible reductions of rules with the same LHS symbol,

230 | Chapter 9: Advanced Flex and Bison

Download at Boykma.Com

and it has to decide what to do. If you know that it should always use the same rule,
you can put %dprec N tags in each of the rules to set the precedence among them. If all
of the rules in an ambiguous reduction have %dprec, the parser reduces the rule with
the highest N. Your other option is to use %merge, which tells it to call a routine you
write that examines the results of all the rules and “merges” the results into the value
to use for the LHS symbol.

While a GLR parser is handling multiple possible parses, it remembers what reductions
it would make for each parse but doesn’t call the action routines. When it resolves the
ambiguity, either by having all but one of the parses fail or by %dprec tags, it then calls
the action routines and catches up. Normally this makes no difference, but if your parser
feeds back information to the scanner, setting start states or flags that the scanner tests,
you may have hard-to-diagnose bugs since the parser won’t be setting the states or flags
when it logically would do so.

GLR Version of the SQL Parser
The SQL parser in Chapter 4 has a few lexical hacks to deal with the limits of LALR
parsers. We’ll take the hacks out and use a GLR parser instead. One hack made
ONDUPLICATE a single token because of a lookahead limitation. The other made NOT
EXISTS a single token that was a variant of EXISTS because of ambiguity in the expression
grammar. This version of the scanner simply takes out those hacks and makes EXISTS,
ON, and DUPLICATE ordinary keyword tokens.

EXISTS { return EXISTS; }
ON { return ON; }
DUPLICATE { return DUPLICATE; }

In the parser, the grammar becomes more straightforward with ON DUPLICATE as sepa-
rate tokens and a separate rule for NOT EXISTS.

opt_ondupupdate: /* nil */
 | ON DUPLICATE KEY UPDATE insert_asgn_list { emit("DUPUPDATE %d", $5); }
 ;
 ...
expr: ...
 | NOT expr { emit("NOT"); }
 | EXISTS '(' select_stmt ')' { emit("EXISTS 1"); }
 | NOT EXISTS '(' select_stmt ')' { emit("EXISTS 0"); }
 ;

The next step is to run the grammar through bison, using the -v switch to create a bison
listing, and to see what it says. In this case, it says there were 2 shift/reduce conflicts
and 59 reduce/reduce:

State 249 conflicts: 1 shift/reduce
State 317 conflicts: 1 shift/reduce
State 345 conflicts: 59 reduce/reduce

GLR Parsing | 231

Download at Boykma.Com

Before throwing the switch to GLR, it’s important to be sure that the conflicts are the
ones we were expecting, so we look at those three states in the listing file:

state 249

 55 join_table: table_reference STRAIGHT_JOIN table_factor .
 56 | table_reference STRAIGHT_JOIN table_factor . ON expr

 ON shift, and go to state 316

 ON [reduce using rule 55 (join_table)]
 $default reduce using rule 55 (join_table)

state 317

 54 join_table: table_reference opt_inner_cross JOIN table_factor . opt_join_condition

 ON shift, and go to state 377
 USING shift, and go to state 378

 ON [reduce using rule 70 (opt_join_condition)]
 $default reduce using rule 70 (opt_join_condition)

 opt_join_condition go to state 379
 join_condition go to state 380

state 345

 263 expr: EXISTS '(' select_stmt ')' .
 264 | NOT EXISTS '(' select_stmt ')' .

 NAME reduce using rule 263 (expr)
 NAME [reduce using rule 264 (expr)]

 ... 57 more reduce/reduce conflicts ...

 ')' reduce using rule 263 (expr)
 ')' [reduce using rule 264 (expr)]
 $default reduce using rule 263 (expr)

States 249 and 317 are indeed limited lookahead for ON, and state 345 is the ambiguity
of treating NOT EXISTS as one operator or two. (The large number of conflicts is because
the token that follows NOT EXISTS can be any token that’s valid in or after an expression.)
Having confirmed that the conflicts are the expected ones, we add three lines to the
definition section, one to make it a GLR parser and the other two to tell bison how
many conflicts to expect. If you change the grammar and the number of conflicts
changes, bison will fail, which is a good thing; then you can go back and be sure the
new set of conflicts is still the expected one.

%glr-parser
%expect 2
%expect-rr 59

232 | Chapter 9: Advanced Flex and Bison

Download at Boykma.Com

With these additions, the parser will now build, and it mostly works. Here it correctly
parses two statements that use ON and ON DUPLICATE, but we haven’t quite finished with
the expression ambiguity:

insert into foo select a from b straight_join c on d;
rpn: NAME a
rpn: TABLE b
rpn: TABLE c
rpn: NAME d
rpn: JOIN 128
rpn: SELECT 0 1 1
rpn: INSERTSELECT 0 foo
rpn: STMT

insert into foo select a from b straight_join c on duplicate key update x=y;
rpn: NAME a
rpn: TABLE b
rpn: TABLE c
rpn: JOIN 128
rpn: SELECT 0 1 1
rpn: NAME y
rpn: ASSIGN x
rpn: DUPUPDATE 1
rpn: INSERTSELECT 0 foo
rpn: STMT

select not exists(select a from b);
rpn: NAME a
rpn: TABLE b
rpn: SELECT 0 1 1
Ambiguity detected.
Option 1,
 expr -> <Rule 247, tokens 2 .. 9>
 NOT <tokens 2 .. 2>
 expr -> <Rule 263, tokens 3 .. 9>
 EXISTS <tokens 3 .. 3>
 '(' <tokens 4 .. 4>
 select_stmt <tokens 5 .. 8>
 ')' <tokens 9 .. 9>

Option 2,
 expr -> <Rule 264, tokens 2 .. 9>
 NOT <tokens 2 .. 2>
 EXISTS <tokens 3 .. 3>
 '(' <tokens 4 .. 4>
 select_stmt <tokens 5 .. 8>
 ')' <tokens 9 .. 9>

1: error: syntax is ambiguous
SQL parse failed

Bison produces excellent diagnostics in GLR parsers. Here we can see the two possible
parses: the first treating NOT EXISTS as separate operators, and the second treating it as

GLR Parsing | 233

Download at Boykma.Com

one operator. This problem is easily fixed with %dprec since the one-operator version
is always the one we want:

expr: ...
 | NOT expr { emit("NOT"); } %dprec 1
 ...
 | NOT EXISTS '(' select_stmt ')' { emit("EXISTS 0"); } %dprec 2

Now the parser works correctly. The other way to resolve ambiguous parses is to pro-
vide your own function that takes the results of both rules and returns the result to be
used as the value of the reduced rule. The arguments to the function and its value are
of type YYSTYPE, which is the name that flex gives to the union created from %union
declarations. If there are multiple reduce/reduce conflicts, you need a separate function
for each one you want to resolve yourself. Each rule involved has a %merge tag, and all
of the tags have to be the same for the rules involved in a conflict to be resolved:

%{
YYSTYPE exprmerge(YYSTYPE x1, YYSTYPE x2);
%}
expr: ...
 | NOT expr { emit("NOT"); } %merge <exprmerge>
 ...
 | NOT EXISTS '(' select_stmt ')' { emit("EXISTS 0"); } %merge <exprmerge>

It’s hard to come up with an application of %merge that isn’t either contrived or ex-
tremely complicated. Since the merge function is called after all of the possible rules
have been reduced, the values for rules have to be ASTs or something similar that
contain all of the necessary information about all of the possible parses. The function
would look at the ASTs and probably pick one to return and throw the other away,
remembering to free its allocated storage first. The classic ambiguous syntax handled
by GLR parsers is C++ declarations, which can be syntactically identical to an assign-
ment with a typecast, but since the resolution rule is that anything that can be a dec-
laration is a declaration, %dprec handles it just fine with no merging needed.

In many cases, GLR parsers are overkill, and you’re better off tweaking your scanner
and parser to run in a regular LALR parser, but if you have a predefined input language
that just isn’t LALR, GLR can be a lifesaver.

C++ Parsers
Bison can create parsers in C++. Although flex appears to be able to create C++, scan-
ners, the C++ code doesn’t work.† Fortunately, C scanners created by flex compile
under C++ and it is not hard to use a flex C scanner with a bison C++ parser, which
is what we’ll do in the next example.

† This is confirmed by the guy who wrote it. It will probably be fixed eventually, but it turned out to be
surprisingly hard to design a good C++ interface for flex scanners.

234 | Chapter 9: Advanced Flex and Bison

Download at Boykma.Com

All bison C++ parsers are reentrant, so bison creates a class for the parser. As with
reentrant C parsers, the programmer can create as many instances as needed and usually
passes in per-instance application data kept in a separate class.

Every time you create a C++ parser, bison creates four class headers; location.hh and
position.hh to define the location structure, stack.hh for the internal parser stack, and
the header for the parser itself. The first three always have the same contents; the last
has specific values from the parser, as its C equivalent does. The parser header includes
the other files, so they’re separate files mostly; therefore they can be included by the
lexer and other modules that need to handle locations. (One could ask why they didn’t
just make those three files standard library include files.) Creating the parser header is
mandatory, since the generated C++ source includes it, although you still have to tell
bison to do so.

A C++ Calculator
C++ parsers are somewhat more complex than C parsers, so to keep the code man-
ageable, the example is based on the very simple calculator from Chapter 1. To make
it slightly more interesting, the calculator can work in any radix from 2 to 10, with the
radix being stored in the per-parser application context.

The application class cppcalc_ctx is defined in the header file cppcalc-ctx.hh, shown
in Example 9-6.

Example 9-6. Application context class for the C++ calculator cppcalc-ctx.hh

class cppcalc_ctx {
public:
 cppcalc_ctx(int r) { assert(r > 1 && r <= 10); radix = r; }

 inline int getradix(void) { return radix; }

private:
 int radix;

};

C++ Parser Naming
Unless otherwise instructed, bison creates the parser in the yy namespace, specifically
in a class called parser. The parser itself is a class method called parse, which you call
after creating an instance of the class. The namespace can be changed by the declaration
%define namespace, and the class can be changed by %define parser_class_name. In this
example we change the class name to cppcalc. The class contains the private data for
a parser. It also has some debugging methods enabled by defining the preprocessor
symbol YYDEBUG, notably set_debug_level(N), which turns on parser tracing if N is
nonzero.

C++ Parsers | 235

Download at Boykma.Com

A C++ Parser
The C++ parser, shown in Example 9-7, uses some new declarations.

Example 9-7. C++ calculator parser cppcalc.yy

/* C++ version of calculator */

%language "C++"
%defines
%locations

%define parser_class_name "cppcalc"

%{
#include <iostream>
using namespace std;
#include "cppcalc-ctx.hh"
%}

%parse-param { cppcalc_ctx &ctx }
%lex-param { cppcalc_ctx &ctx }

%union {
 int ival;
};

/* declare tokens */
%token <ival> NUMBER
%token ADD SUB MUL DIV ABS
%token OP CP
%token EOL

%type <ival> exp factor term

%{
extern int yylex(yy::cppcalc::semantic_type *yylval,
 yy::cppcalc::location_type* yylloc,
 cppcalc_ctx &ctx);

void myout(int val, int radix);
%}

%initial-action {
 // Filename for locations here
 @$.begin.filename = @$.end.filename = new std::string("stdin");
}
%%
%%

The parser uses %language to declare that it’s written in C++ rather than in C,
%defines to create the header file, %locations to put code to handle locations into the
parser, and %define to call the class cppcalc rather than the default parser. Then some
C++ code includes the iostream library and the context header described earlier.

236 | Chapter 9: Advanced Flex and Bison

Download at Boykma.Com

The %parser-param and %lex-param declarations are the ones we met in the section
“Pure Parsers in Bison” on page 212, and we define an extra argument to the parser
(the parser’s class constructor) and to yylex. In this example we’re not using a reentrant
lexer, but if we were, the parameter to the lexer would have to be a flex scanner context
yyscan_t as it was in the previous example. It would use the same trick of storing it in
a field in the parser parameter, which is now an instance of the context class.

We declare a %union, which works the same way it does in C. In this simple case it has
one member, the integer value of an expression. Following that are the token and non-
terminal declarations.

C++ and %union
Although C allows a union to include structures, C++ doesn’t permit a union to include
class instances, so you can’t use a class directly in a %union. Pointers to class instances
are fine and are quite common in C++ parsers. Since the class instances pointed to will
be dynamically allocated with new, remember that in each action where RHS symbols
have class pointer values, each pointer value has to be saved somewhere it can be ref-
erenced later or has to be deleted. If you use parser error recovery, use %destructor
declarations to tell bison how to free values that are discarded during error recovery.
Otherwise, the program will have storage leaks.

These are the same rules that apply to malloced C structures, as in the AST we built in
Chapter 3.

For some reason, bison doesn’t create the declaration of yylex that C++ requires, so
we do it manually here. Its arguments are the same as in the pure C example: pointers
to the token value, token location, and the lex-param context pointer. In a C++ parser,
token values and locations have the types semantic_type and location_type, both
members of the parser class. We also define myout, an output routine defined later that
prints values using a particular radix.

In a C parser that uses locations, if you want to report the filename, you have to add
your own code to do so, as in section “More Sophisticated Locations with File-
names” on page 202, but the C++ version of locations fixes that oversight, adding a
filename string field to the begin and end positions in each location. The %initial-
action sets the filename for the initial location in $@, which is the location that’s passed
to the scanner. That is all we need since the scanner in this example reads only one file
and never updates the location filename.

 // bison rules for the C++ parser
calclist: /* nothing */
 | calclist exp EOL { cout << "= "; myout(ctx.getradix(), $2); cout << "\n> "; }
 | calclist EOL { cout << "> "; } /* blank line or a comment */
 ;

exp: factor
 | exp ADD factor { $$ = $1 + $3; }

C++ Parsers | 237

Download at Boykma.Com

 | exp SUB factor { $$ = $1 - $3; }
 | exp ABS factor { $$ = $1 | $3; }
 ;

factor: term
 | factor MUL term { $$ = $1 * $3; }
 | factor DIV term { if($3 == 0) {
 error(@3, "zero divide");
 YYABORT;
 }
 $$ = $1 / $3; }
 ;

term: NUMBER
 | ABS term { $$ = $2 >= 0? $2 : - $2; }
 | OP exp CP { $$ = $2; }
 ;
%%

The rules in the parser are the same as they were in Chapter 1, with the action code
changed from C to C++. Note that the rule that prints a top-level calclist expression
now calls myout, passing it the radix fetched from the ctx structure. The rule for division
now has a zero divide test, calling parser class member function error, which replaces
yyerror. (Because of a bug in the C++ parser skeleton, it always calls error with a
location argument even if you don’t use %location. The easiest workaround is always
to use locations in a C++ parser.)

// C++ code section of parser
main()
{
 cppcalc_ctx ctx(8); // work in octal today

 cout << "> ";

 yy::cppcalc parser(ctx); // make a cppcalc parser

 int v = parser.parse(); // and run it

 return v;
}

// print an integer in given radix
void
myout(int radix, int val)
{
 if(val < 0) {
 cout << "-";
 val = -val;
 }
 if(val > radix) {
 myout(radix, val/radix);
 val %= radix;
 }
 cout << val;

238 | Chapter 9: Advanced Flex and Bison

Download at Boykma.Com

}

int
myatoi(int radix, char *s)
{
 int v = 0;

 while(*s) {
 v = v*radix + *s++ - '0';
 }
 return v;
}

namespace yy {
 void
 cppcalc::error(location const &loc, const std::string& s) {
 std::cerr << "error at " << loc << ": " << s << std::endl;
 }
}

Unlike a C pure parser, a C++ pure parser requires that you first create an instance of
the parser then call it. Hence, the main program creates a ctx structure with an appro-
priate radix, creates an instance of yy::cppcalc called parser using that context, and
then calls the parse method to do the actual parsing.

Two helper routines, myout and myatoi, do radix to binary conversion, and finally we
define yy::error, the error routine analogous to yyerror. For some reason, bison de-
clares error as a private member function in the parser class, which means you can’t
call it from elsewhere; in particular, you can’t call it from the scanner. The bison manual
suggests that yy::error call the real error routine, which is defined in a context visible
to the scanner and is probably the best workaround. Notice, incidentally, that the error
routine outputs the location of the error using the normal C++ << operator. This works
because the location class defines a variety of operators including output formatting.

Interfacing a Scanner with a C++ Parser
The flex scanner, shown in Example 9-8, is written in C++-compatible C.

Example 9-8. C++ calculator scanner cppcalc.l

/* recognize tokens for the C++ calculator and print them out */

%option noyywrap
%{
include <cstdlib>

include "cppcalc-ctx.hh"
include "cppcalc.tab.hh"

#define YY_DECL int yylex(yy::cppcalc::semantic_type *yylval, \
 yy::cppcalc::location_type *yylloc, cppcalc_ctx &ctx)

C++ Parsers | 239

Download at Boykma.Com

// make location include the current token
define YY_USER_ACTION yylloc->columns (yyleng);

typedef yy::cppcalc::token token;
extern int myatoi(int radix, char *s); // defined in the parser
%}
%%

The declaration part of the scanner includes the standard C library and the header files
for the context and parser classes. It defines YY_DECL to declare the calling sequence for
yylex to match what the parser expects, and it defines YY_USER_ACTION, the macro in-
voked before the action for each token, to set the location based on the length of the
token. This is the same trick we did in Chapter 8, but the code is much shorter since
C++ locations have a method that does what we want.

The parser token numbers are defined in the token member of the parser class, so a
typedef for the plain name token will make the token values easier to type.

 // rules for C++-compatible scanner
%{
 // start where previous token ended
 yylloc->step ();
%}

"+" { return token::ADD; }
"-" { return token::SUB; }
"*" { return token::MUL; }
"/" { return token::DIV; }
"|" { return token::ABS; }
"(" { return token::OP; }
")" { return token::CP; }
[0-9]+ { yylval->ival = myatoi(ctx.getradix(), yytext); return token::NUMBER; }

\n { yylloc->lines(1); return token::EOL; }

 /* skip over comments and whitespace */
"//".* |
[\t] { yylloc->step (); }

. { printf("Mystery character %c\n", *yytext); }
%%

The code at the beginning of the rules section is copied near the beginning of yylex.
The step method sets the beginning of the location equal to the end, so the location
now points to the end of the previous token. (An alternative would be what we did in
Chapter 8, tracking the line and column in local variables and copying them into the
location for each token, but this takes advantage of predefined methods on C++ loca-
tions to make the code shorter.)

The action code prefixes the token names with token:: since the token names are now
parser class members. The action for a newline uses the lines method to update the
location line number, the action for comments and whitespace invokes step since they

240 | Chapter 9: Advanced Flex and Bison

Download at Boykma.Com

don’t return from the scanner, and the previous step is invoked only when yylex has
returned and is called again.

The last catchall rule prints an error message. In the original C version of the scanner
it called yyerror, but since this scanner isn’t part of the C++ parser class, it can’t call
the parser error routine. Rather than write glue routines to allow the various parts of
the program to call the same error reporting routine, for simplicity we just call printf.

Should You Write Your Parser in C++ ?
As should be apparent by now, the C++ support in bison is nowhere near as mature
as the C support, which is not surprising since it’s about 30 years newer. The fact that
%union can’t include class instances can require some extra work, and the less than
seamless integration between C++ bison and C flex requires careful programming,
particularly if they need to share significant data structures accessed from C in the
scanner and C++ in the parser or if they need to have the scanner read its input using
C stdio while the rest of the program uses C++ library I/O. A good object design would
wrap a class around the application context (ctx in this example), the parser, and
probably the scanner to present a unified interface to the rest of the program.

Nonetheless, C++ bison parsers do work, and the design of the parser class is a rea-
sonable one. If you’re integrating your parser into a larger C++ project or if you want
to use C++ libraries that don’t have C equivalents, a C++ parser can work well.

Java and Beyond
Bison currently (2009) has experimental support for parsers written in Java. By the time
you read this, it may support other languages as well. The Java support is modeled on
that for C++, with adjustments for the Java environment, which has no preprocessor
or unions, but does have garbage collection. Since the details are likely to have changed,
consult the bison manual for the current Java interface.

Exercises
1. Modify the parser in the pure calculator to parse one statement at a time and return

without using YYACCEPT. You’ll probably want to change the scanner so it returns
a zero token at end-of-line rather than using EOL.

2. Does the GLR version of the SQL parser accept the same language as the original
version? Come up with an example that would be accepted and one that wouldn’t.
(Hint: Try putting comments between tokens that usually just have a space be-
tween them.)

Exercises | 241

Download at Boykma.Com

Download at Boykma.Com

APPENDIX

SQL Parser Grammar and Cross-
Reference

Since the grammar for the SQL parser in Chapter 4 is so large, here’s a list of the rules
in the order they appear in the source file, as well as a cross-reference of each token and
nonterminal symbol with the rules where they appear. This cross-reference is for the
slightly extended version in Chapter 8 that includes error recovery rules.

The listing in Example A-1 and the cross-references in Example A-2 are extracted from
the listing file lpmysql.output created when bison compiled the grammar. The listing
also includes a list of unused tokens, of which this grammar has quite a few since it
defines SQL keywords not used in the subset we parse, and it includes the complete
set of parser states and shift and reduce actions. The entire listing is more than 10,000
lines long, much too long to include in this book, but is invaluable for reference when
debugging a grammar.

Example A-1. SQL grammar listing

 0 $accept: stmt_list $end

 1 stmt_list: stmt ';'
 2 | stmt_list stmt ';'
 3 | error ';'
 4 | stmt_list error ';'

 5 stmt: select_stmt

 6 select_stmt: SELECT select_opts select_expr_list
 7 | SELECT select_opts select_expr_list FROM table_references opt_where
 opt_groupby opt_having opt_orderby opt_limit opt_into_list

 8 opt_where: /* empty */
 9 | WHERE expr

 10 opt_groupby: /* empty */
 11 | GROUP BY groupby_list opt_with_rollup

243

Download at Boykma.Com

 12 groupby_list: expr opt_asc_desc
 13 | groupby_list ',' expr opt_asc_desc

 14 opt_asc_desc: /* empty */
 15 | ASC
 16 | DESC

 17 opt_with_rollup: /* empty */
 18 | WITH ROLLUP

 19 opt_having: /* empty */
 20 | HAVING expr

 21 opt_orderby: /* empty */
 22 | ORDER BY groupby_list

 23 opt_limit: /* empty */
 24 | LIMIT expr
 25 | LIMIT expr ',' expr

 26 opt_into_list: /* empty */
 27 | INTO column_list

 28 column_list: NAME
 29 | STRING
 30 | column_list ',' NAME
 31 | column_list ',' STRING

 32 select_opts: /* empty */
 33 | select_opts ALL
 34 | select_opts DISTINCT
 35 | select_opts DISTINCTROW
 36 | select_opts HIGH_PRIORITY
 37 | select_opts STRAIGHT_JOIN
 38 | select_opts SQL_SMALL_RESULT
 39 | select_opts SQL_BIG_RESULT
 40 | select_opts SQL_CALC_FOUND_ROWS

 41 select_expr_list: select_expr
 42 | select_expr_list ',' select_expr
 43 | '*'

 44 select_expr: expr opt_as_alias

 45 table_references: table_reference
 46 | table_references ',' table_reference

 47 table_reference: table_factor
 48 | join_table

 49 table_factor: NAME opt_as_alias index_hint
 50 | NAME '.' NAME opt_as_alias index_hint
 51 | table_subquery opt_as NAME
 52 | '(' table_references ')'

244 | Appendix: SQL Parser Grammar and Cross-Reference

Download at Boykma.Com

 53 opt_as: AS
 54 | /* empty */

 55 opt_as_alias: AS NAME
 56 | NAME
 57 | /* empty */

 58 join_table: table_reference opt_inner_cross JOIN table_factor opt_join_condition
 59 | table_reference STRAIGHT_JOIN table_factor
 60 | table_reference STRAIGHT_JOIN table_factor ON expr
 61 | table_reference left_or_right opt_outer JOIN table_factor
 join_condition
 62 | table_reference NATURAL opt_left_or_right_outer JOIN table_factor

 63 opt_inner_cross: /* empty */
 64 | INNER
 65 | CROSS

 66 opt_outer: /* empty */
 67 | OUTER

 68 left_or_right: LEFT
 69 | RIGHT

 70 opt_left_or_right_outer: LEFT opt_outer
 71 | RIGHT opt_outer
 72 | /* empty */

 73 opt_join_condition: join_condition
 74 | /* empty */

 75 join_condition: ON expr
 76 | USING '(' column_list ')'

 77 index_hint: USE KEY opt_for_join '(' index_list ')'
 78 | IGNORE KEY opt_for_join '(' index_list ')'
 79 | FORCE KEY opt_for_join '(' index_list ')'
 80 | /* empty */

 81 opt_for_join: FOR JOIN
 82 | /* empty */

 83 index_list: NAME
 84 | index_list ',' NAME

 85 table_subquery: '(' select_stmt ')'

 86 stmt: delete_stmt

 87 delete_stmt: DELETE delete_opts FROM NAME opt_where opt_orderby opt_limit

 88 delete_opts: delete_opts LOW_PRIORITY
 89 | delete_opts QUICK
 90 | delete_opts IGNORE
 91 | /* empty */

SQL Parser Grammar and Cross-Reference | 245

Download at Boykma.Com

 92 delete_stmt: DELETE delete_opts delete_list FROM table_references opt_where

 93 delete_list: NAME opt_dot_star
 94 | delete_list ',' NAME opt_dot_star

 95 opt_dot_star: /* empty */
 96 | '.' '*'

 97 delete_stmt: DELETE delete_opts FROM delete_list USING table_references
 opt_where

 98 stmt: insert_stmt

 99 insert_stmt: INSERT insert_opts opt_into NAME opt_col_names VALUES
 insert_vals_list opt_ondupupdate

 100 opt_ondupupdate: /* empty */
 101 | ONDUPLICATE KEY UPDATE insert_asgn_list

 102 insert_opts: /* empty */
 103 | insert_opts LOW_PRIORITY
 104 | insert_opts DELAYED
 105 | insert_opts HIGH_PRIORITY
 106 | insert_opts IGNORE

 107 opt_into: INTO
 108 | /* empty */

 109 opt_col_names: /* empty */
 110 | '(' column_list ')'

 111 insert_vals_list: '(' insert_vals ')'
 112 | insert_vals_list ',' '(' insert_vals ')'

 113 insert_vals: expr
 114 | DEFAULT
 115 | insert_vals ',' expr
 116 | insert_vals ',' DEFAULT

 117 insert_stmt: INSERT insert_opts opt_into NAME SET insert_asgn_list
 opt_ondupupdate
 118 | INSERT insert_opts opt_into NAME opt_col_names select_stmt
 opt_ondupupdate

 119 insert_asgn_list: NAME COMPARISON expr
 120 | NAME COMPARISON DEFAULT
 121 | insert_asgn_list ',' NAME COMPARISON expr
 122 | insert_asgn_list ',' NAME COMPARISON DEFAULT

 123 stmt: replace_stmt

 124 replace_stmt: REPLACE insert_opts opt_into NAME opt_col_names VALUES
 insert_vals_list opt_ondupupdate
 125 | REPLACE insert_opts opt_into NAME SET insert_asgn_list

246 | Appendix: SQL Parser Grammar and Cross-Reference

Download at Boykma.Com

 opt_ondupupdate
 126 | REPLACE insert_opts opt_into NAME opt_col_names select_stmt
 opt_ondupupdate

 127 stmt: update_stmt

 128 update_stmt: UPDATE update_opts table_references SET update_asgn_list opt_where
 opt_orderby opt_limit

 129 update_opts: /* empty */
 130 | insert_opts LOW_PRIORITY
 131 | insert_opts IGNORE

 132 update_asgn_list: NAME COMPARISON expr
 133 | NAME '.' NAME COMPARISON expr
 134 | update_asgn_list ',' NAME COMPARISON expr
 135 | update_asgn_list ',' NAME '.' NAME COMPARISON expr

 136 stmt: create_database_stmt

 137 create_database_stmt: CREATE DATABASE opt_if_not_exists NAME
 138 | CREATE SCHEMA opt_if_not_exists NAME

 139 opt_if_not_exists: /* empty */
 140 | IF EXISTS

 141 stmt: create_table_stmt

 142 create_table_stmt: CREATE opt_temporary TABLE opt_if_not_exists
 NAME '(' create_col_list ')'
 143 | CREATE opt_temporary TABLE opt_if_not_exists NAME '.'
 NAME '(' create_col_list ')'
 144 | CREATE opt_temporary TABLE opt_if_not_exists
 NAME '(' create_col_list ')' create_select_statement
 145 | CREATE opt_temporary TABLE opt_if_not_exists
 NAME create_select_statement
 146 | CREATE opt_temporary TABLE opt_if_not_exists NAME '.'
 NAME '(' create_col_list ')' create_select_statement
 147 | CREATE opt_temporary TABLE opt_if_not_exists NAME '.'
 NAME create_select_statement

 148 create_col_list: create_definition
 149 | create_col_list ',' create_definition

 150 $@1: /* empty */

 151 create_definition: $@1 NAME data_type column_atts
 152 | PRIMARY KEY '(' column_list ')'
 153 | KEY '(' column_list ')'
 154 | INDEX '(' column_list ')'
 155 | FULLTEXT INDEX '(' column_list ')'
 156 | FULLTEXT KEY '(' column_list ')'

 157 column_atts: /* empty */
 158 | column_atts NOT NULLX

SQL Parser Grammar and Cross-Reference | 247

Download at Boykma.Com

 159 | column_atts NULLX
 160 | column_atts DEFAULT STRING
 161 | column_atts DEFAULT INTNUM
 162 | column_atts DEFAULT APPROXNUM
 163 | column_atts DEFAULT BOOL
 164 | column_atts AUTO_INCREMENT
 165 | column_atts UNIQUE '(' column_list ')'
 166 | column_atts UNIQUE KEY
 167 | column_atts PRIMARY KEY
 168 | column_atts KEY
 169 | column_atts COMMENT STRING

 170 opt_length: /* empty */
 171 | '(' INTNUM ')'
 172 | '(' INTNUM ',' INTNUM ')'

 173 opt_binary: /* empty */
 174 | BINARY

 175 opt_uz: /* empty */
 176 | opt_uz UNSIGNED
 177 | opt_uz ZEROFILL

 178 opt_csc: /* empty */
 179 | opt_csc CHAR SET STRING
 180 | opt_csc COLLATE STRING

 181 data_type: BIT opt_length
 182 | TINYINT opt_length opt_uz
 183 | SMALLINT opt_length opt_uz
 184 | MEDIUMINT opt_length opt_uz
 185 | INT opt_length opt_uz
 186 | INTEGER opt_length opt_uz
 187 | BIGINT opt_length opt_uz
 188 | REAL opt_length opt_uz
 189 | DOUBLE opt_length opt_uz
 190 | FLOAT opt_length opt_uz
 191 | DECIMAL opt_length opt_uz
 192 | DATE
 193 | TIME
 194 | TIMESTAMP
 195 | DATETIME
 196 | YEAR
 197 | CHAR opt_length opt_csc
 198 | VARCHAR '(' INTNUM ')' opt_csc
 199 | BINARY opt_length
 200 | VARBINARY '(' INTNUM ')'
 201 | TINYBLOB
 202 | BLOB
 203 | MEDIUMBLOB
 204 | LONGBLOB
 205 | TINYTEXT opt_binary opt_csc
 206 | TEXT opt_binary opt_csc
 207 | MEDIUMTEXT opt_binary opt_csc
 208 | LONGTEXT opt_binary opt_csc

248 | Appendix: SQL Parser Grammar and Cross-Reference

Download at Boykma.Com

 209 | ENUM '(' enum_list ')' opt_csc
 210 | SET '(' enum_list ')' opt_csc

 211 enum_list: STRING
 212 | enum_list ',' STRING

 213 create_select_statement: opt_ignore_replace opt_as select_stmt

 214 opt_ignore_replace: /* empty */
 215 | IGNORE
 216 | REPLACE

 217 opt_temporary: /* empty */
 218 | TEMPORARY

 219 stmt: set_stmt

 220 set_stmt: SET set_list

 221 set_list: set_expr
 222 | set_list ',' set_expr

 223 set_expr: USERVAR COMPARISON expr
 224 | USERVAR ASSIGN expr

 225 expr: NAME
 226 | USERVAR
 227 | NAME '.' NAME
 228 | STRING
 229 | INTNUM
 230 | APPROXNUM
 231 | BOOL
 232 | expr '+' expr
 233 | expr '-' expr
 234 | expr '*' expr
 235 | expr '/' expr
 236 | expr '%' expr
 237 | expr MOD expr
 238 | '-' expr
 239 | expr ANDOP expr
 240 | expr OR expr
 241 | expr XOR expr
 242 | expr COMPARISON expr
 243 | expr COMPARISON '(' select_stmt ')'
 244 | expr COMPARISON ANY '(' select_stmt ')'
 245 | expr COMPARISON SOME '(' select_stmt ')'
 246 | expr COMPARISON ALL '(' select_stmt ')'
 247 | expr '|' expr
 248 | expr '&' expr
 249 | expr '^' expr
 250 | expr SHIFT expr
 251 | NOT expr
 252 | '!' expr
 253 | USERVAR ASSIGN expr
 254 | expr IS NULLX

SQL Parser Grammar and Cross-Reference | 249

Download at Boykma.Com

 255 | expr IS NOT NULLX
 256 | expr IS BOOL
 257 | expr IS NOT BOOL
 258 | expr BETWEEN expr AND expr

 259 val_list: expr
 260 | expr ',' val_list

 261 opt_val_list: /* empty */
 262 | val_list

 263 expr: expr IN '(' val_list ')'
 264 | expr NOT IN '(' val_list ')'
 265 | expr IN '(' select_stmt ')'
 266 | expr NOT IN '(' select_stmt ')'
 267 | EXISTS '(' select_stmt ')'
 268 | NAME '(' opt_val_list ')'
 269 | FCOUNT '(' '*' ')'
 270 | FCOUNT '(' expr ')'
 271 | FSUBSTRING '(' val_list ')'
 272 | FSUBSTRING '(' expr FROM expr ')'
 273 | FSUBSTRING '(' expr FROM expr FOR expr ')'
 274 | FTRIM '(' val_list ')'
 275 | FTRIM '(' trim_ltb expr FROM val_list ')'

 276 trim_ltb: LEADING
 277 | TRAILING
 278 | BOTH

 279 expr: FDATE_ADD '(' expr ',' interval_exp ')'
 280 | FDATE_SUB '(' expr ',' interval_exp ')'

 281 interval_exp: INTERVAL expr DAY_HOUR
 282 | INTERVAL expr DAY_MICROSECOND
 283 | INTERVAL expr DAY_MINUTE
 284 | INTERVAL expr DAY_SECOND
 285 | INTERVAL expr YEAR_MONTH
 286 | INTERVAL expr YEAR
 287 | INTERVAL expr HOUR_MICROSECOND
 288 | INTERVAL expr HOUR_MINUTE
 289 | INTERVAL expr HOUR_SECOND

 290 expr: CASE expr case_list END
 291 | CASE expr case_list ELSE expr END
 292 | CASE case_list END
 293 | CASE case_list ELSE expr END

 294 case_list: WHEN expr THEN expr
 295 | case_list WHEN expr THEN expr

 296 expr: expr LIKE expr
 297 | expr NOT LIKE expr
 298 | expr REGEXP expr
 299 | expr NOT REGEXP expr
 300 | CURRENT_TIMESTAMP

250 | Appendix: SQL Parser Grammar and Cross-Reference

Download at Boykma.Com

 301 | CURRENT_DATE
 302 | CURRENT_TIME
 303 | BINARY expr

Example A-2. SQL grammar terminal symbol cross-reference

Terminals, with rules where they appear

$end (0) 0
'!' (33) 252
'%' (37) 236
'&' (38) 248
'(' (40) 52 76 77 78 79 85 110 111 112 142 143 144 146 152 153 154
 155 156 165 171 172 198 200 209 210 243 244 245 246 263 264 265
 266 267 268 269 270 271 272 273 274 275 279 280
')' (41) 52 76 77 78 79 85 110 111 112 142 143 144 146 152 153 154
 155 156 165 171 172 198 200 209 210 243 244 245 246 263 264 265
 266 267 268 269 270 271 272 273 274 275 279 280
'*' (42) 43 96 234 269
'+' (43) 232
',' (44) 13 25 30 31 42 46 84 94 112 115 116 121 122 134 135 149 172
 212 222 260 279 280
'-' (45) 233 238
'.' (46) 50 96 133 135 143 146 147 227
'/' (47) 235
';' (59) 1 2 3 4
'^' (94) 249
'|' (124) 247
error (256) 3 4
NAME (258) 28 30 49 50 51 55 56 83 84 87 93 94 99 117 118 119 120 121
 122 124 125 126 132 133 134 135 137 138 142 143 144 145 146 147
 151 225 227 268
STRING (259) 29 31 160 169 179 180 211 212 228
INTNUM (260) 161 171 172 198 200 229
BOOL (261) 163 231 256 257
APPROXNUM (262) 162 230
USERVAR (263) 223 224 226 253
ASSIGN (264) 224 253
OR (265) 240
XOR (266) 241
ANDOP (267) 239
REGEXP (268) 298 299
LIKE (269) 296 297
IS (270) 254 255 256 257
IN (271) 263 264 265 266
NOT (272) 158 251 255 257 264 266 297 299
BETWEEN (273) 258
COMPARISON (274) 119 120 121 122 132 133 134 135 223 242 243 244 245
 246
SHIFT (275) 250
MOD (276) 237
UMINUS (277)
ADD (278)
ALL (279) 33 246
ALTER (280)
ANALYZE (281)

SQL Parser Grammar and Cross-Reference | 251

Download at Boykma.Com

AND (282) 258
ANY (283) 244
AS (284) 53 55
ASC (285) 15
AUTO_INCREMENT (286) 164
BEFORE (287)
BIGINT (288) 187
BINARY (289) 174 199 303
BIT (290) 181
BLOB (291) 202
BOTH (292) 278
BY (293) 11 22
CALL (294)
CASCADE (295)
CASE (296) 290 291 292 293
CHANGE (297)
CHAR (298) 179 197
CHECK (299)
COLLATE (300) 180
COLUMN (301)
COMMENT (302) 169
CONDITION (303)
CONSTRAINT (304)
CONTINUE (305)
CONVERT (306)
CREATE (307) 137 138 142 143 144 145 146 147
CROSS (308) 65
CURRENT_DATE (309) 301
CURRENT_TIME (310) 302
CURRENT_TIMESTAMP (311) 300
CURRENT_USER (312)
CURSOR (313)
DATABASE (314) 137
DATABASES (315)
DATE (316) 192
DATETIME (317) 195
DAY_HOUR (318) 281
DAY_MICROSECOND (319) 282
DAY_MINUTE (320) 283
DAY_SECOND (321) 284
DECIMAL (322) 191
DECLARE (323)
DEFAULT (324) 114 116 120 122 160 161 162 163
DELAYED (325) 104
DELETE (326) 87 92 97
DESC (327) 16
DESCRIBE (328)
DETERMINISTIC (329)
DISTINCT (330) 34
DISTINCTROW (331) 35
DIV (332)
DOUBLE (333) 189
DROP (334)
DUAL (335)
EACH (336)

252 | Appendix: SQL Parser Grammar and Cross-Reference

Download at Boykma.Com

ELSE (337) 291 293
ELSEIF (338)
ENCLOSED (339)
END (340) 290 291 292 293
ENUM (341) 209
ESCAPED (342)
EXISTS (343) 140 267
EXIT (344)
EXPLAIN (345)
FETCH (346)
FLOAT (347) 190
FOR (348) 81 273
FORCE (349) 79
FOREIGN (350)
FROM (351) 7 87 92 97 272 273 275
FULLTEXT (352) 155 156
GRANT (353)
GROUP (354) 11
HAVING (355) 20
HIGH_PRIORITY (356) 36 105
HOUR_MICROSECOND (357) 287
HOUR_MINUTE (358) 288
HOUR_SECOND (359) 289
IF (360) 140
IGNORE (361) 78 90 106 131 215
INDEX (362) 154 155
INFILE (363)
INNER (364) 64
INOUT (365)
INSENSITIVE (366)
INSERT (367) 99 117 118
INT (368) 185
INTEGER (369) 186
INTERVAL (370) 281 282 283 284 285 286 287 288 289
INTO (371) 27 107
ITERATE (372)
JOIN (373) 58 61 62 81
KEY (374) 77 78 79 101 152 153 156 166 167 168
KEYS (375)
KILL (376)
LEADING (377) 276
LEAVE (378)
LEFT (379) 68 70
LIMIT (380) 24 25
LINES (381)
LOAD (382)
LOCALTIME (383)
LOCALTIMESTAMP (384)
LOCK (385)
LONG (386)
LONGBLOB (387) 204
LONGTEXT (388) 208
LOOP (389)
LOW_PRIORITY (390) 88 103 130
MATCH (391)

SQL Parser Grammar and Cross-Reference | 253

Download at Boykma.Com

MEDIUMBLOB (392) 203
MEDIUMINT (393) 184
MEDIUMTEXT (394) 207
MINUTE_MICROSECOND (395)
MINUTE_SECOND (396)
MODIFIES (397)
NATURAL (398) 62
NO_WRITE_TO_BINLOG (399)
NULLX (400) 158 159 254 255
NUMBER (401)
ON (402) 60 75
ONDUPLICATE (403) 101
OPTIMIZE (404)
OPTION (405)
OPTIONALLY (406)
ORDER (407) 22
OUT (408)
OUTER (409) 67
OUTFILE (410)
PRECISION (411)
PRIMARY (412) 152 167
PROCEDURE (413)
PURGE (414)
QUICK (415) 89
READ (416)
READS (417)
REAL (418) 188
REFERENCES (419)
RELEASE (420)
RENAME (421)
REPEAT (422)
REPLACE (423) 124 125 126 216
REQUIRE (424)
RESTRICT (425)
RETURN (426)
REVOKE (427)
RIGHT (428) 69 71
ROLLUP (429) 18
SCHEMA (430) 138
SCHEMAS (431)
SECOND_MICROSECOND (432)
SELECT (433) 6 7
SENSITIVE (434)
SEPARATOR (435)
SET (436) 117 125 128 179 210 220
SHOW (437)
SMALLINT (438) 183
SOME (439) 245
SONAME (440)
SPATIAL (441)
SPECIFIC (442)
SQL (443)
SQLEXCEPTION (444)
SQLSTATE (445)
SQLWARNING (446)

254 | Appendix: SQL Parser Grammar and Cross-Reference

Download at Boykma.Com

SQL_BIG_RESULT (447) 39
SQL_CALC_FOUND_ROWS (448) 40
SQL_SMALL_RESULT (449) 38
SSL (450)
STARTING (451)
STRAIGHT_JOIN (452) 37 59 60
TABLE (453) 142 143 144 145 146 147
TEMPORARY (454) 218
TEXT (455) 206
TERMINATED (456)
THEN (457) 294 295
TIME (458) 193
TIMESTAMP (459) 194
TINYBLOB (460) 201
TINYINT (461) 182
TINYTEXT (462) 205
TO (463)
TRAILING (464) 277
TRIGGER (465)
UNDO (466)
UNION (467)
UNIQUE (468) 165 166
UNLOCK (469)
UNSIGNED (470) 176
UPDATE (471) 101 128
USAGE (472)
USE (473) 77
USING (474) 76 97
UTC_DATE (475)
UTC_TIME (476)
UTC_TIMESTAMP (477)
VALUES (478) 99 124
VARBINARY (479) 200
VARCHAR (480) 198
VARYING (481)
WHEN (482) 294 295
WHERE (483) 9
WHILE (484)
WITH (485) 18
WRITE (486)
YEAR (487) 196 286
YEAR_MONTH (488) 285
ZEROFILL (489) 177
FSUBSTRING (490) 271 272 273
FTRIM (491) 274 275
FDATE_ADD (492) 279
FDATE_SUB (493) 280
FCOUNT (494) 269 270

Nonterminals, with rules where they appear

$accept (254)
 on left: 0
stmt_list (255)

SQL Parser Grammar and Cross-Reference | 255

Download at Boykma.Com

 on left: 1 2 3 4, on right: 0 2 4
stmt (256)
 on left: 5 86 98 123 127 136 141 219, on right: 1 2
select_stmt (257)
 on left: 6 7, on right: 5 85 118 126 213 243 244 245 246 265 266
 267
opt_where (258)
 on left: 8 9, on right: 7 87 92 97 128
opt_groupby (259)
 on left: 10 11, on right: 7
groupby_list (260)
 on left: 12 13, on right: 11 13 22
opt_asc_desc (261)
 on left: 14 15 16, on right: 12 13
opt_with_rollup (262)
 on left: 17 18, on right: 11
opt_having (263)
 on left: 19 20, on right: 7
opt_orderby (264)
 on left: 21 22, on right: 7 87 128
opt_limit (265)
 on left: 23 24 25, on right: 7 87 128
opt_into_list (266)
 on left: 26 27, on right: 7
column_list (267)
 on left: 28 29 30 31, on right: 27 30 31 76 110 152 153 154 155
 156 165
select_opts (268)
 on left: 32 33 34 35 36 37 38 39 40, on right: 6 7 33 34 35 36
 37 38 39 40
select_expr_list (269)
 on left: 41 42 43, on right: 6 7 42
select_expr (270)
 on left: 44, on right: 41 42
table_references (271)
 on left: 45 46, on right: 7 46 52 92 97 128
table_reference (272)
 on left: 47 48, on right: 45 46 58 59 60 61 62
table_factor (273)
 on left: 49 50 51 52, on right: 47 58 59 60 61 62
opt_as (274)
 on left: 53 54, on right: 51 213
opt_as_alias (275)
 on left: 55 56 57, on right: 44 49 50
join_table (276)
 on left: 58 59 60 61 62, on right: 48
opt_inner_cross (277)
 on left: 63 64 65, on right: 58
opt_outer (278)
 on left: 66 67, on right: 61 70 71
left_or_right (279)
 on left: 68 69, on right: 61
opt_left_or_right_outer (280)
 on left: 70 71 72, on right: 62
opt_join_condition (281)

256 | Appendix: SQL Parser Grammar and Cross-Reference

Download at Boykma.Com

 on left: 73 74, on right: 58
join_condition (282)
 on left: 75 76, on right: 61 73
index_hint (283)
 on left: 77 78 79 80, on right: 49 50
opt_for_join (284)
 on left: 81 82, on right: 77 78 79
index_list (285)
 on left: 83 84, on right: 77 78 79 84
table_subquery (286)
 on left: 85, on right: 51
delete_stmt (287)
 on left: 87 92 97, on right: 86
delete_opts (288)
 on left: 88 89 90 91, on right: 87 88 89 90 92 97
delete_list (289)
 on left: 93 94, on right: 92 94 97
opt_dot_star (290)
 on left: 95 96, on right: 93 94
insert_stmt (291)
 on left: 99 117 118, on right: 98
opt_ondupupdate (292)
 on left: 100 101, on right: 99 117 118 124 125 126
insert_opts (293)
 on left: 102 103 104 105 106, on right: 99 103 104 105 106 117
 118 124 125 126 130 131
opt_into (294)
 on left: 107 108, on right: 99 117 118 124 125 126
opt_col_names (295)
 on left: 109 110, on right: 99 118 124 126
insert_vals_list (296)
 on left: 111 112, on right: 99 112 124
insert_vals (297)
 on left: 113 114 115 116, on right: 111 112 115 116
insert_asgn_list (298)
 on left: 119 120 121 122, on right: 101 117 121 122 125
replace_stmt (299)
 on left: 124 125 126, on right: 123
update_stmt (300)
 on left: 128, on right: 127
update_opts (301)
 on left: 129 130 131, on right: 128
update_asgn_list (302)
 on left: 132 133 134 135, on right: 128 134 135
create_database_stmt (303)
 on left: 137 138, on right: 136
opt_if_not_exists (304)
 on left: 139 140, on right: 137 138 142 143 144 145 146 147
create_table_stmt (305)
 on left: 142 143 144 145 146 147, on right: 141
create_col_list (306)
 on left: 148 149, on right: 142 143 144 146 149
create_definition (307)
 on left: 151 152 153 154 155 156, on right: 148 149
$@1 (308)

SQL Parser Grammar and Cross-Reference | 257

Download at Boykma.Com

 on left: 150, on right: 151
column_atts (309)
 on left: 157 158 159 160 161 162 163 164 165 166 167 168 169, on right:
 151 158 159 160 161 162 163 164 165 166 167 168 169
opt_length (310)
 on left: 170 171 172, on right: 181 182 183 184 185 186 187 188
 189 190 191 197 199
opt_binary (311)
 on left: 173 174, on right: 205 206 207 208
opt_uz (312)
 on left: 175 176 177, on right: 176 177 182 183 184 185 186 187
 188 189 190 191
opt_csc (313)
 on left: 178 179 180, on right: 179 180 197 198 205 206 207 208
 209 210
data_type (314)
 on left: 181 182 183 184 185 186 187 188 189 190 191 192 193 194
 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210,
 on right: 151
enum_list (315)
 on left: 211 212, on right: 209 210 212
create_select_statement (316)
 on left: 213, on right: 144 145 146 147
opt_ignore_replace (317)
 on left: 214 215 216, on right: 213
opt_temporary (318)
 on left: 217 218, on right: 142 143 144 145 146 147
set_stmt (319)
 on left: 220, on right: 219
set_list (320)
 on left: 221 222, on right: 220 222
set_expr (321)
 on left: 223 224, on right: 221 222
expr (322)
 on left: 225 226 227 228 229 230 231 232 233 234 235 236 237 238
 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
 255 256 257 258 263 264 265 266 267 268 269 270 271 272 273 274
 275 279 280 290 291 292 293 296 297 298 299 300 301 302 303, on right:
 9 12 13 20 24 25 44 60 75 113 115 119 121 132 133 134 135 223 224
 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
 248 249 250 251 252 253 254 255 256 257 258 259 260 263 264 265
 266 270 272 273 275 279 280 281 282 283 284 285 286 287 288 289
 290 291 293 294 295 296 297 298 299 303
val_list (323)
 on left: 259 260, on right: 260 262 263 264 271 274 275
opt_val_list (324)
 on left: 261 262, on right: 268
trim_ltb (325)
 on left: 276 277 278, on right: 275
interval_exp (326)
 on left: 281 282 283 284 285 286 287 288 289, on right: 279 280
case_list (327)
 on left: 294 295, on right: 290 291 292 293 295

258 | Appendix: SQL Parser Grammar and Cross-Reference

Download at Boykma.Com

Glossary

action
The C or C++ code associated with a flex
pattern or a bison rule. When the pattern or
rule matches an input sequence, the action
code is executed.

alphabet
A set of distinct symbols. For example, the
ASCII character set is a collection of 128 dif-
ferent symbols. In a flex specification, the
alphabet is the native character set of the
computer. In a bison grammar, the alphabet
is the set of tokens and nonterminals used
in the grammar.

ambiguity
An ambiguous grammar is one with more
than one rule or set of rules that match the
same input. In a bison grammar, ambiguous
rules cause shift/reduce or reduce/reduce
conflicts. The parsing mechanism that bison
normally uses cannot handle ambiguous
grammars. The programmer can use %prec
declarations and bison’s own internal rules
to resolve conflicts when creating a parser,
or the programmer can use a GLR parser,
which can handle ambiguous grammars
directly.

ASCII
American Standard Code for Information
Interchange; a collection of 128 symbols
representing the common symbols found in
the American alphabet: lowercase and up-
percase letters, digits, and punctuation, plus
additional characters for formatting and
control of data communication links. Most

systems that run flex and bison use ASCII or
extended 8-bit codes in the ISO-8859 series
that include ASCII as a subset.

bison
A program that translates a dialect of BNF
into LALR(1) or GLR parsers.

BNF
Backus-Naur Form; a method of represent-
ing context-free grammars. It is commonly
used to specify formal grammars of pro-
gramming languages. The input syntax of
bison is a simplifed version of BNF.

compiler
A program that translates a set of instruc-
tions (a program) in one language into some
other representation; typically, the output
of a compiler is in the native binary language
that can be run directly on a computer.
Compare to interpreter.

conflict
An error within the bison grammar in which
two (or more) parsing actions are possible
when parsing the same input token. There
are two types of conflicts: shift/reduce and
reduce/reduce. (See also ambiguity.)

context-free grammar
A grammar in which each rule has a single
symbol on the LHS; hence, one in which the
RHS can match input regardless of what
might precede or follow the material it
matches. Also called a phrase structure
grammar. Context-sensitive grammars,
containing rules with several symbols on the

259

Download at Boykma.Com

LHS, are not practical for parsing computer
languages.

empty
The special case of a string with zero sym-
bols, sometimes written as a Greek epsilon.
Bison rules can match the empty string, but
flex patterns cannot.

finite automaton
An abstract machine that consists of a finite
number of instructions (or transitions). Fi-
nite automata are useful in modeling many
commonly occurring computer processes
and have useful mathematical properties.
Flex and bison create scanners and parsers
based on finite automata.

flex
A program for producing lexical analyzers,
also known as scanners, that match patterns
defined by regular expressions to a character
stream.

GLR
Generalized Left to Right; a powerful pars-
ing technique that bison can optionally use.
Unlike LALR(1), it can parse grammars that
are ambiguous or need indefinite lookahead
by maintaining all possible parses in parallel
of the input read so far.

grammar
A set of rules that together define a language.

input
A stream of data read by a program. For in-
stance, the input to a flex scanner is a se-
quence of bytes, while the input to a bison
parser is a sequence of tokens.

interpreter
A program that reads instructions in a lan-
guage (a program) and decodes and acts on
them one at a time. Compare to compiler.

LALR(1)
Look Ahead Left to Right; the parsing tech-
nique that bison normally uses. The (1) de-
notes that the lookahead is limited to a sin-
gle token.

language
Formally, a well-defined set of strings over
some alphabet; informally, some set of in-
structions for describing tasks that can be
executed by a computer.

left-hand side (LHS)
The left-hand side or LHS of a bison rule is
the symbol that precedes the colon. During
a parse, when the input matches the se-
quence of symbols on the RHS of the rule,
that sequence is reduced to the LHS symbol.

lex
A program that produced lexical analyzers
that match patterns defined by regular ex-
pressions to a character stream. Now super-
seded by flex, which is more reliable and
more powerful.

lexical analyzer
A program that converts a character stream
into a token stream. Flex takes a description
of individual tokens as regular expressions,
divides the character stream into tokens,
and determines the types and values of the
tokens. For example, it might turn the char-
acter stream a = 17; into a token stream
consisting of the name a, the operator =, the
number 17, and the single character to-
ken ;. Also called a lexer or scanner.

lookahead
Input read by a parser or scanner but not yet
matched to a pattern or rule. Bison parsers
have a single token of lookahead, while flex
scanners can have indefinitely long look-
ahead.

nonterminal
Symbols in a bison grammar that do not ap-
pear in the input but instead are defined by
rules. Contrast to tokenizing.

parser stack
In a bison parser, the symbols for partially
matched rules are stored on an internal
stack. Symbols are added to the stack when
the parser shifts and are removed when it
reduces.

empty

260 | Glossary

Download at Boykma.Com

parsing
The process of taking a stream of tokens and
logically grouping them into statements
within some language.

pattern
In a flex scanner, a regular expression that
the scanner matches against the input.

precedence
The order in which some particular opera-
tion is performed; for example, when inter-
preting mathematical statements, multipli-
cation and division are assigned higher prec-
edence than addition and subtraction.
Thus, the statement 3+4*5 is 23 as opposed
to 35.

production
See rule.

program
A set of instructions that perform a certain
defined task.

reduce
In a bison parser, when the input matches
the list of symbols on the RHS of a rule, the
parser reduces the rule by removing the RHS
symbols from the parser stack and replacing
them with the LHS symbol.

reduce/reduce conflict
In a bison grammar, the situation where two
or more rules match the same string of to-
kens. Bison resolves the conflict by reducing
the rule that occurs earlier in the grammar.

regular expression
A language for specifying patterns that
match a sequence of characters. Regular ex-
pressions consist of normal characters,
which match the same character in the in-
put; character classes, which match any sin-
gle character in the class; and other charac-
ters, which specify the way that parts of the
expression are to be matched against the
input.

right-hand side (RHS)
The right-hand side or RHS of a bison rule
is the list of symbols that follow the colon.

During a parse, when the input matches the
sequence of symbols on the RHS of the rule,
that sequence is reduced to the LHS symbol.

rule
In bison, rules are the abstract description of
the grammar. Bison rules are also called
productions. A rule is a single nonterminal
called the LHS, a colon, and a possibly
empty set of symbols called the RHS. When-
ever the input matches the RHS of a rule, the
parser reduces the rule.

semantic meaning
See value.

shift
A bison parser shifts an input symbol, plac-
ing it onto the parser stack in expectation
that the symbol will match one of the rules
in the grammar.

shift/reduce conflict
In a bison grammar, the situation where a
symbol completes the RHS of one rule,
which the parser needs to reduce, and is an
intermediate symbol in the RHS of other
rules, for which the parser needs to shift the
symbol. Shift/reduce conflicts occur either
because the grammar is ambiguous or be-
cause the parser would need to look more
than one token ahead to decide whether to
reduce the rule that the symbol completes.
Bison resolves the conflict by doing the shift.

specification
A flex specification is a set of patterns to be
matched against an input stream. Flex turns
a specification into a scanner.

start
The single symbol to which a bison parser
reduces a valid input stream. Rules with the
start symbol on the LHS are called start
rules.

start state
In a flex specification, patterns can be tag-
ged with start states. At any point one start
state is active, and patterns tagged with that
start state can match the input. In an exclu-
sive start state, only tagged patterns can

start state

Glossary | 261

Download at Boykma.Com

match, while in an inclusive state, untagged
patterns can also match the input.

symbol
In bison terminology, symbols are either to-
kens or nonterminals. In the rules for the
grammar, any name found on the right-
hand side of a rule is always a symbol.

In bison terminology, tokens or terminals are
the symbols provided to the parser by the
scanner. Compare to a nonterminal, which
is defined within the parser.

symbol table
A data structure containing information
about names occurring in the input so that
all references to the same name can be rela-
ted to the same object.

tokenizing
The process of converting a stream of char-
acters into a stream of tokens is termed to-
kenizing. A scanner tokenizes its input.

value
Each token in a bison grammar has both a
syntactic and a semantic value; its semantic
value is the actual data contents of the to-
ken. For instance, the syntactic type of a
certain operation may be INTEGER, but its se-
mantic value might be 3.

yacc
Yet Another Compiler Compiler; the pred-
ecessor to bison, a program that generates a
parser from a list of rules in BNF-like format.

symbol

262 | Glossary

Download at Boykma.Com

Index

Symbols
" (quotation mark), 20, 159
$ (dollar sign), 20, 122, 134, 158, 160
% (percent sign), 119, 120, 158
%code, 147
%code blocks, 147
%destructor, 148
%expect, 145
%initial-action, 149
%name-prefix, 165
%parse-param, 152
%start, 159
%type, 162
%union

bison, 65, 163
C++, 237

%union construct, 53
' (single quotes), 91, 159
() (parenthesis), 20, 133
(Generalized Left to Right (see GLR)
* (asterisk), 20, 133
+ (plus sign), 20, 133
-p flag, 165
. (period), 19, 132, 159
/ (slash), 21, 122, 134
: (colon), 47, 159
:= (assignment operator), 98
; (semicolon), 159
< > (angle brackets), 134, 159, 160
? (question mark), 133
@ (at sign), 158
[] (brackets), 19, 133
\ (backslash), 20, 133
^ (caret), 20, 121, 134

_ (underscore), 159
{ } (braces), 20, 120, 122, 133, 159
| (vertical bar), 20, 47, 120, 134, 159

A
abstract syntax tree (see AST)
actions

bison grammar, 142, 158
defined, 2, 259
embedded, 146

alphabet
defined, 259

ambiguity
bison, 144
and bison grammars, 154
defined, 259
example of, 34
grammars, 14
reduce/reduce conflicts, 178

ambiguous patterns
regular expressions, 22

angle brackets < >, 134, 159, 160
ASCII (American Standard Code for

Information Interchange)
defined, 259

assignment operator (:=), 98
associativity

declarations, 154
operators, 59

AST (abstract syntax tree)
about, 51
calculator example, 52–57, 61–79

asterisk (*), 20, 133
at sign (@), 158
attributes

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

263

Download at Boykma.Com

bison, 148

B
backslash (\), 20, 133
Backus-Naur Form (see BNF)
BEGIN macro, 120
BETWEEN ... AND operator

SQL, 98
binary expressions

SQL, 97
bison, 47–79, 141–171

%code blocks, 147
%destructor, 148
%initial-action, 149
%parse-param, 152
%start, 159
actions, 142
ambiguity and conflicts, 144
AST, 51
bison parser example, 51, 52–57, 61–79
bison parsers, 153
bugs in bison programs, 146
C++ parsers, 147
compared to handwritten scanners and

parsers, 16
compiling with flex, 13
defined, 259
distribution of, xv, 1
end markers, 147
error recovery, 205–207
error tokens and error recovery, 147
errors and locations feature, 199–204
grammar, 141
history, xv
inherited attributes, 148
integrating with flex, 5
Java parsers, 241
lexical feedback, 150
library, 167
literal blocks, 151
literal tokens, 151
matching input, 47
multiple parsers, 165
parsing ambiguous grammars, 14
precedence and associativity declarations,

154
pure parsers, 212
push and pull parsers, 229
recursive rules, 155

reentrant scanners, 132
rules, 11, 157
shift/reduce conflicts and operator

precedence, 58–61
shift/reduce parsing, 48–51
special characters, 158
symbol values, 160
tokens, 161
variant and multiple grammars, 163
y.output files, 166
YYABORT, 168
YYACCEPT, 168
YYBACKUP macro, 168
yyclearin, 169
yydebug and YYDEBUG, 169
yyerrok, 169
YYERROR macro, 170
yyerror(), 170
yyparse(), 171
YYRECOVERING() macro, 171

BNF (Backus-Naur Form)
defined, 259
gramars, 10

braces { }, 20, 120, 122, 133, 159
brackets [], 19, 133
buffers

flex input, 123
size of in flex lexers, 129

bugs (see errors)

C
C code

bison, 142, 147
flex, 120

C comments
pattern matching, 40

C keywords
pattern matching, 41

C language cross-referencer example, 38–45
C lexers

porting, 129
C numbers, 42
C parsers

porting, 153
C++ parsers, 234–241

bison, 147
C++ calculator, 235
C++ parser naming, 235
example, 236–239

264 | Index

Download at Boykma.Com

interfacing with scanners, 239
writing in C++, 241

C++ scanners
flex, 121

calculator example, 51, 52–57, 61–79, 214–
229, 235

caret (^), 20, 121, 134
CASE statement

SQL, 101
character codes

portability, 153
character sets

flex, 129
characters

pattern matching, 42
special characters, 158

colon (:), 47, 159
columns

CREATE DATABASE statement, 112
commands

preprocessor commands, 43
comments

C comments, 40
SQL, 93

compilers
compiling flex and bison together, 13
defined, 259
and error recovery, 208

concordance generators
symbol tables, 32–38

conflicts, 173–195
bison, 144
defined, 259
examples, 183–187
fixing conflicts, 187–194
name.output, 178, 182
parser states, 176
pointer model, 173, 182
precedence and associativity declarations,

155
reduce/reduce conflicts, 175, 178, 191–194
shift/reduce conflicts, 146, 155, 175, 180,

188–194
when interchanging precedence, 146

constants
in SQL expressions, 97

content-dependent tokens
regular expressions, 22

context sensitivity

flex, 121
context-free grammar

defined, 259
CREATE DATABASE statement

SQL parsing, 110
CREATE TABLE statement

SQL parsing, 111–114
cross-referencers

C language example, 38–45
handling preprocessor commands, 43

D
“dangling else” conflicts

precedence rules, 60
data types

CREATE DATABASE statement, 113
databases

CREATE DATABASE statement, 110
relational databases and SQL, 82

declaring symbol types, 160
definition section

bison grammar, 142
flex specification, 119

definitions
flex, 122

DELETE statement
SQL parsing, 106

depth-first traversals, 57
dollar sign ($), 20, 122, 134, 158, 160

E
ECHO macro

flex, 123
embedded actions

bison, 143, 146
empty

defined, 260
end markers

bison, 147
error recovery

in parsers, 67
error tokens

placement of, 207
errors, 197–208

bison, 146, 147, 199–204
recovery, 204–208
reporting, 197

evaluating

Index | 265

Download at Boykma.Com

functions, 76
examples

C language cross-referencer, 38–45
C++ parser, 236–239
calculator example, 51, 52–57, 61–79, 214–

229, 235
conflicts, 183–187
regular expressions, 21
word count example, 2, 24
“Hello World” flex program, 2

explicit symbol types
bison, 160

expression grammars conflict example, 183
expression precedence

shift/reduce conflicts, 191
expressions, 19

(see also regular expressions)
bison syntax, 67
regular expressions, 2–9
SQL expressions, 96–101

F
field declarations

copying into C unions, 163
file nesting

flex input, 124
reentrant scanners, 131

filenames
location feature in bison, 202

files
I/O in flex scanners, 23
nested input files, 28–31
reading, 24
y.output files, 166

finite automaton
defined, 260

flattening
limited lookahead, 191

flex, 19–45, 119–139
BEGIN macro, 120
C language cross-referencer example, 38–

45
C++ scanners, 121
compared to handwritten scanners and

parsers, 16
compiling with bison, 13
context sensitivity, 121
defined, 260
definitions (substitutions), 122

distribution of, xv, 1
ECHO macro, 123
file I/O in flex scanners, 23
flex library, 24, 125
history, xv
I/O structure of flex scanners, 25
input sources, 123
integrating with bison, 5
interactive and batch scanners, 126
line numbers and yylineno, 126
literal blocks, 126
multiple lexers, 127
portability of flex lexers, 129
pure scanners, 210
reading files, 24
reentrant scanners, 130
regular expressions, 19–22, 132–135
REJECT, 135
scanner options, 129
start states, 136
start states and nested input files, 28–31
symbol tables and concordance generators,

32–38
unput() macro, 137
yyinput() and yyunput() macros, 137
yyleng, 137
yyless() macro, 137
yylex() function, 135, 138
yymore(), 139
yyrestart(), 139
yywrap(), 139
YY_DECL macro, 138
yy_scan_string and yy_scan_buffer

functions, 139
YY_USER_ACTION macro, 139
“Hello World” flex program, 2

flex scanners
I/O, 23, 25

flex specification, 119
functions

evaluating, 76
input() function, 125
scanning, 92
SQL value expressions, 99
user defined functions, 76
yyless() function, 122
yylex() function, 120, 130, 135, 138, 210
yy_scan_string and yy_scan_buffer

functions, 139

266 | Index

Download at Boykma.Com

G
glossary, 259–262
GLR (Generalized Left to Right)

defined, 260
parsing, 145, 230

grammar
ambiguity, 14, 178
bison syntax, 65–67, 141
changing, 15
defined, 260
and parsing, 9–13
parsing SQL, 243–258
porting bison grammars, 153
reserved words, 69
variant and multiple bison grammars, 163

H
hashing with linear probing, 35
header files

including in scanners, 216
“Hello World” flex program, 2

I
I/O

flex input sources, 123
flex scanner structure, 25
in flex scanners, 23
start states and nested input files, 28–31

IF/THEN/ELSE conflict resolution technique,
185, 188

IN operator
SQL, 99

indexes
CREATE DATABASE statement, 112
SQL tables, 105

infinite recursion, 146
inherited attributes

bison, 148
input

defined, 260
input buffers

flex, 123
input() function, 125
input() macro, 27
INSERT statement

SQL parsing, 107–109
interpreter

defined, 260

J
Java parsers

bison support for, 241
joins

SQL tables, 105

K
keywords

C keywords, 41
SQL, 86–90, 93

L
LALR (Look Ahead Left to Right)

defined, 260
language

defined, 260
left context

flex, 121
left recursion, 66, 156
left-hand side (see LHS)
lex

defined, 260
history, xv

lexers
calculator example, 69
locations feature in bison, 201
multiple, 127
multiple bison parsers, 165
parsing SQL, 85–94
portability, 129

lexical analysis
parsing, 1

lexical analyzer
defined, 260

lexical feedback
bison, 150

LHS (left-hand side)
defined, 260
reduce/reduce conflicts, 192

libraries
bison library, 167
flex library, 24, 125
portability of bison library, 153

limited lookahead
shift/reduce conflicts, 191

line numbers
flex, 126

lists of values

Index | 267

Download at Boykma.Com

SQL, 98
literal blocks

bison, 151
flex, 126

literal character tokens, 54–57
literal tokens

bison, 151
locations feature, 199–204
Look Ahead Left to Right (LALR)

defined, 260
lookahead

defined, 260
Łukasiewicz, Jan

RPN, 84
lyyerror(), 200

M
macros

BEGIN macro, 120
ECHO macro, 123
input() macro, 27
unput() macro, 27, 137
YYBACKUP macro, 168
YYERROR macro, 170
yyinput() and yyunput() macros, 137
yyless() macro, 137
YYRECOVERING() macro, 171
YY_DECL macro, 138
YY_INPUT macro, 27, 125
YY_USER_ACTION macro, 139, 201

main()
bison library, 167

make files
pure applications, 229

Makefile
SQL parser, 116

markers
end markers, 147

metacharacters
flex expressions, 132–135

metalanguage
regular expressions, 19

MySQL (see SQL, parsing)

N
name.output, 178, 182
names

scanning, 92

NATURAL joins
SQL tables, 106

nested files
input, 28–31, 124
reentrant scanners, 131

nested list grammar conflict example, 186
nested list-creating loops

shift/reduce conflicts, 190
nested SELECT statements, 105
nodefault, 27
nonterminal symbols, 141
nonterminals

declaring types of, 162
defined, 260

NOT IN operator
SQL, 99

noyywrap, 24
numbers

C numbers, 42
scanning, 90

O
operators

associativity, 59
precedence, 58–61
scanning, 91

output (see I/O)

P
parenthesis (), 20, 133
parser stack

defined, 260
parser states

conflicts, 176
parsing, 81

(see also SQL, parsing)
ambiguous grammars in bison, 14
bison error recovery in interactive parsers,

206
bison parser example, 51, 52–57, 61–79
C++ parsers, 147, 234–241
combined bison parsers, 163
defined, 261
flex and bison compared to handwritten

scanners and parsers, 16
GLR parsers, 145
and grammar, 9–13
how bison parsers matches input, 47

268 | Index

Download at Boykma.Com

lexical analysis, 1
locations feature in bison, 200
multiple bison parsers, 165
multiple instances of multiple parsers, 214
pure scanners and parsers, 209–229
push and pull parsers, 229
shift/reduce parsing, 48–51

patterns
ambiguous patterns, 22
defined, 261

percent sign (%), 119, 120, 158
period (.), 19, 132, 159
plus sign (+), 20, 133
pointer model

conflicts, 173, 182
portability

bison parsers, 153
POSIX lex

flex compatibility, 119
POSIX yacc

bison compatibility, 141
postfix operators

SQL, 98
precedence

bison, 154
defined, 261
example of, 14
interchanging, 146
operators, 58–61, 59

preprocessor commands
handling in cross-referencers, 43

PRIMARY KEY, 82
production (see rules)
program

defined, 261
pull parsers, 229
punctuation

scanning, 91
punctuators

pattern matching, 42
pure-parser, 132
push parsers, 229

Q
question mark (?), 133
quotation mark ("), 20, 159

R
reading files, 24
recursion

bison, 146
recursive parsing, 165
recursive rules

bison, 155
reduce

defined, 261
reduce/reduce conflicts, 175

ambiguous grammar, 178
bison, 145
defined, 261
fixing, 191–194
pointer model, 175

reduction
defined, 49

reentrant calculator example, 214–229
reentrant scanners

flex, 130
regular expressions, 19–22

ambiguous patterns, 22
content-dependent tokens, 22
defined, 261
examples, 21
flex, 132–135
scanning, 2–9

REJECT, 135
relational databases

SQL, 82
REPLACE statement

SQL parsing, 107–109
reporting

errors, 197
reserved words

bison parser example, 69
SQL, 90

RHL (right-hand side)
defined, 261

right context
flex, 122

right recursion, 66, 156
RPN (Reverse Polish Notation)

SQL to, 84
rules

adding, 15
bison grammar, 157
bison rule input language, 11
defined, 261

Index | 269

Download at Boykma.Com

embedded actions, 143
operator precedence rules, 58–61
recursion, 146, 155
SQL top-level parsing rules, 96

rules section
bison grammar, 142
flex specification, 120

S
scanning

about, 1
C++ scanners, 121
flex and bison compared to handwritten

scanners and parsers, 16
flex scanners, 22, 25
functions and names, 92
interactive and batch scanners, 126
interfacing scanners with C++ parsers, 239
multiple instances of multiple scanners,

214
numbers, 90
operators and punctuation, 91
options in flex, 129
pure parsers and scanners, 209–229
reentrant scanners, 130
regular expressions, 2–9
scanners as coroutines, 6
SQL keywords, 86–90

SELECT statements
recursive, 98
SQL parsing, 101–106

semantic meaning (see values)
semicolon (:), 159
sentences

bison grammar, 47
shift

defined, 261
shift/reduce conflicts

bison, 144, 155
defined, 261
embedded actions, 146
example, 175
fixing, 188–194
identifying, 180
operator precedence, 58–61

shift/reduce parsing
bison, 48–51

single quotes ('), 91, 159
slash (/), 21, 122, 134

special characters
bison, 158

specification
defined, 261

SQL, parsing, 81–117
GLR version of SQL parser, 231
grammar, 243–258
lexer, 85–94
Makefile, 116
parser, 94–116
RPN, 84
SQL overview, 81–84

start
defined, 261

start states
defined, 261
flex, 136
nested input files, 28–31

statements
bison syntax, 65

states
parser states, 176
start states, 28–31

stdio file chaining
flex, 123

strings
flex input, 124
pattern matching, 42
SQL, 91

subroutines
flex specification, 120

subroutines section
bison grammar, 142

substitutions
flex, 122

symbol tables
concordance generator, 32–38
defined, 262

symbol types
inherited attributes, 149

symbols
bison error recovery and, 206
bison grammar, 141
defined, 262
terminal symbols, 161
types for embedded actions, 144
values, 160

synchronization points
bison error recovery, 205

270 | Index

Download at Boykma.Com

synthesized attributes, 148

T
tables

CREATE TABLE statement, 111–114
relational databases, 82
SELECT table references, 102–106
symbol tables, 32–38

terminal symbols, 141
bison, 161

tokenizing
defined, 262

tokens
about, 7
bison, 161
content-dependent tokens, 22
error tokens, 207
interchanging precedence, 146
literal character tokens, 54–57
literal tokens in bison, 151
SQL, 85
symbols as, 141

tuple calculus
SQL, 82

U
unary expressions

SQL, 97
underscore (_), 159
unput() macro, 27, 137
unterminated quoted strings

detecting, 198
UPDATE statement

SQL parsing, 110
user defined functions

bison parser example, 76
user variables

SQL parsing, 114

V
value types

declaring, 162
values

in bison parsers, 53
defined, 262
tokens, 7

variable-length lists of expressions
SQL, 98

variables
names in SQL expressions, 97
user variables in SQL parsing, 114

vertical bar (|), 20, 47, 120, 134, 159

W
whitespace

scanning, 94
word count example, 2, 24

Y
y.output files

bison, 166
yacc (Yet Another Compiler Compiler)

defined, 262
history, xv

YYABORT, 168
YYACCEPT, 168
YYBACKUP macro, 168
yyclearin, 169
yydebug, 169
YYDEBUG, 169
yyerrok, 169
YYERROR macro, 170
yyerror(), 167, 170, 200
yyin, 26
yyinput() and yyunput() macros, 137
yyleng, 137
yyless() function, 122
yyless() macro, 137
yylex() function, 120, 130, 135, 138, 210
yylineno, 31, 126
yymore(), 139
yyout, 27
yyparse(), 152, 165, 168, 171
YYRECOVERING() macro, 171
yyrestart(), 24, 139
YYSTYPE, 160
yywrap(), 24, 139
YY_BUFFER_STATE, 26
YY_BUF_SIZE, 129
YY_DECL macro, 138
YY_INPUT macro, 27, 125
yy_scan_buffer function, 139
yy_scan_string function, 139
YY_USER_ACTION macro, 139, 201

Index | 271

Download at Boykma.Com

Download at Boykma.Com

About the Author
John R. Levine is the author of several dozen books, including lex and yacc and
qmail published by O’Reilly, and The Internet for Dummies. He writes, consults, and
lectures on computer software, network and email security, and policy topics.

Colophon
Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach to
technical topics, breathing personality and life into potentially dry subjects.

The animals on the cover of flex & bison are Nicobar pigeons (Caloenas nicobarica).
This large (approximately 40 cm) bird with gray, yellow, and iridescent green plumage
resides on islands from the Bay of Bengal and Malaysia through New Guinea. DNA
analysis suggests that it is the closest living relative of the Dodo (Raphus cucullatus).

The cover image is adapted from part of a plate in The Royal Natural History, written
by English naturalist Richard Lydekker in 1895. The cover font is Adobe ITC Gara-
mond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSansMonoCondensed.

Download at Boykma.Com

Download at Boykma.Com

	Table of Contents
	Preface
	Scope of This Book
	Conventions Used in This Book
	Getting Flex and Bison
	This Book’s Example Files
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introducing Flex and Bison
	Lexical Analysis and Parsing
	Regular Expressions and Scanning
	Our First Flex Program
	Programs in Plain Flex
	Putting Flex and Bison Together
	The Scanner as Coroutine
	Tokens and Values

	Grammars and Parsing
	BNF Grammars
	Bison’s Rule Input Language
	Compiling Flex and Bison Programs Together

	Ambiguous Grammars: Not Quite
	Adding a Few More Rules
	Flex and Bison vs. Handwritten Scanners and Parsers
	Exercises

	Chapter 2. Using Flex
	Regular Expressions
	Regular Expression Examples
	How Flex Handles Ambiguous Patterns
	Context-Dependent Tokens

	File I/O in Flex Scanners
	Reading Several Files
	The I/O Structure of a Flex Scanner
	Input to a Flex Scanner
	Flex Scanner Output

	Start States and Nested Input Files
	Symbol Tables and a Concordance Generator
	Managing Symbol Tables
	Using a Symbol Table

	C Language Cross-Reference
	Exercises

	Chapter 3. Using Bison
	How a Bison Parser Matches Its Input
	Shift/Reduce Parsing
	What Bison’s LALR(1) Parser Cannot Parse

	A Bison Parser
	Abstract Syntax Trees
	An Improved Calculator That Creates ASTs
	Literal Character Tokens
	Building the AST Calculator

	Shift/Reduce Conflicts and Operator Precedence
	When Not to Use Precedence Rules

	An Advanced Calculator
	Advanced Calculator Parser
	Calculator Statement Syntax
	Calculator Expression Syntax
	Top-Level Calculator Grammar
	Basic Parser Error Recovery
	The Advanced Calculator Lexer
	Reserved Words
	Building and Interpreting ASTs
	Evaluating Functions in the Calculator
	User-Defined Functions

	Using the Advanced Calculator
	Exercises

	Chapter 4. Parsing SQL
	A Quick Overview of SQL
	Relational Databases

	Manipulating Relations
	Three Ways to Use SQL
	SQL to RPN
	The Lexer
	Scanning SQL Keywords
	Scanning Numbers
	Scanning Operators and Punctuation
	Scanning Functions and Names
	Comments and Miscellany

	The Parser
	The Top-Level Parsing Rules
	SQL Expressions
	Functions
	Other expressions

	Select Statements
	Select options and table references
	SELECT table references

	Delete Statement
	Insert and Replace Statements
	Replace statement

	Update Statement
	Create Database
	Create Table
	User Variables
	The Parser Routines

	The Makefile for the SQL Parser
	Exercises

	Chapter 5. A Reference for Flex Specifications
	Structure of a Flex Specification
	Definition Section
	Rules Section
	User Subroutines

	BEGIN
	C++ Scanners
	Context Sensitivity
	Left Context
	Right Context

	Definitions (Substitutions)
	ECHO
	Input Management
	Stdio File Chaining
	Input Buffers
	Input from Strings
	File Nesting
	input()
	YY_INPUT

	Flex Library
	Interactive and Batch Scanners
	Line Numbers and yylineno
	Literal Block
	Multiple Lexers in One Program
	Combined Lexers
	Multiple Lexers

	Options When Building a Scanner
	Portability of Flex Lexers
	Porting Generated C Lexers
	Buffer sizes
	Character sets

	Reentrant Scanners
	Extra Data for Reentrant Scanners
	Access to Reentrant Scanner Data
	Reentrant Scanners, Nested Files, and Multiple Scanners
	Using Reentrant Scanners with Bison

	Regular Expression Syntax
	Metacharacters

	REJECT
	Returning Values from yylex()
	Start States
	unput()
	yyinput() yyunput()
	yyleng
	yyless()
	yylex() and YY_DECL
	yymore()
	yyrestart()
	yy_scan_string and yy_scan_buffer
	YY_USER_ACTION
	yywrap()

	Chapter 6. A Reference for Bison Specifications
	Structure of a Bison Grammar
	Symbols
	Definition Section
	Rules Section
	User Subroutines Section

	Actions
	Embedded Actions
	Symbol Types for Embedded Actions

	Ambiguity and Conflicts
	Types of Conflicts
	Shift/Reduce Conflicts
	Reduce/Reduce Conflicts
	%expect
	GLR Parsers

	Bugs in Bison Programs
	Infinite Recursion
	Interchanging Precedence
	Embedded Actions

	C++ Parsers
	%code Blocks
	End Marker
	Error Token and Error Recovery
	%destructor

	Inherited Attributes ($0)
	Symbol Types for Inherited Attributes

	%initial-action
	Lexical Feedback
	Literal Block
	Literal Tokens
	Locations
	%parse-param
	Portability of Bison Parsers
	Porting Bison Grammars
	Porting Generated C Parsers
	Libraries
	Character Codes

	Precedence and Associativity Declarations
	Precedence
	Associativity
	Precedence Declarations
	Using Precedence and Associativity to Resolve Conflicts
	Typical Uses of Precedence

	Recursive Rules
	Left and Right Recursion

	Rules
	Special Characters
	%start Declaration
	Symbol Values
	Declaring Symbol Types
	Explicit Symbol Types

	Tokens
	Token Numbers
	Token Values
	%type Declaration
	%union Declaration

	Variant and Multiple Grammars
	Combined Parsers

	Multiple Parsers
	Using %name-prefix or the -p Flag
	Lexers for Multiple Parsers
	Pure Parsers

	y.output Files
	Bison Library
	main()
	yyerror()

	YYABORT
	YYACCEPT
	YYBACKUP
	yyclearin
	yydebug and YYDEBUG
	YYDEBUG
	yydebug

	yyerrok
	YYERROR
	yyerror()
	yyparse()
	YYRECOVERING()

	Chapter 7. Ambiguities and Conflicts
	The Pointer Model and Conflicts
	Kinds of Conflicts
	Parser States
	Contents of name.output
	Reduce/Reduce Conflicts
	Shift/Reduce Conflicts
	Review of Conflicts in name.output
	Common Examples of Conflicts
	Expression Grammars
	IF/THEN/ELSE
	Nested List Grammar

	How Do You Fix the Conflict?
	IF/THEN/ELSE (Shift/Reduce)
	Loop Within a Loop (Shift/Reduce)
	Expression Precedence (Shift/Reduce)
	Limited Lookahead (Shift/Reduce or Reduce/Reduce)
	Overlap of Alternatives (Reduce/Reduce)

	Summary
	Exercises

	Chapter 8. Error Reporting and Recovery
	Error Reporting
	Locations
	Adding Locations to the Parser
	Adding Locations to the Lexer
	More Sophisticated Locations with Filenames

	Error Recovery
	Bison Error Recovery
	Freeing Discarded Symbols
	Error Recovery in Interactive Parsers
	Where to Put Error Tokens

	Compiler Error Recovery
	Exercises

	Chapter 9. Advanced Flex and Bison
	Pure Scanners and Parsers
	Pure Scanners in Flex
	Pure Parsers in Bison
	Using Pure Scanners and Parsers Together
	A Reentrant Calculator

	GLR Parsing
	GLR Version of the SQL Parser

	C++ Parsers
	A C++ Calculator
	C++ Parser Naming
	A C++ Parser
	Interfacing a Scanner with a C++ Parser
	Should You Write Your Parser in C++ ?

	Exercises

	Appendix. SQL Parser Grammar and Cross-Reference
	Glossary
	Index

